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Abstract—Artificial intelligence (AI) has become a powerful
approach to solving complex problems in critical domains.
Many concerns arise regarding the decision-making process
of its models, which is mainly due to deep neural networks
outperforming their peers at the cost of ambiguity in feature
extraction and prediction. Consequently, in critical domains
like remote sensing, where we need to analyze high-resolution
imagery using black-box models, the lack of transparency limits
their trust and thus their adoption. In front of this reality,
explaining and understanding the complex AI model’s decision-
making process becomes a must. Explainable AI (XAI) aims to
bridge this gap by providing insights into how and why certain
decisions are made. While significant progress has been achieved
in explaining image classification tasks, image segmentation still
offers considerable room for improvement. In this context, this
paper proposes an entropy-centric XAI method for semantic
segmentation. Moreover, a new XAI evaluation methodology is
proposed to efficiently measure the relevance of the highlighted
regions by the proposed XAI method. Experimental results
demonstrate the superiority of the proposed XAI method in
comparison to the recently adapted XAI methods for semantic
segmentation.

Index Terms—Explainable AI, Remote Sensing, Image Segme-
nation, Entropy-Centric.

I. INTRODUCTION

Artificial Intelligence (AI) has achieved promising success
in various domains, including remote sensing, where it is
employed in critical applications, such as land use monitoring
[1], environmental assessment [2, 3], and disaster manage-
ment [4]. Al-based solutions introduced automated feature
extraction compared to traditional machine learning schemes.
Feature extraction is one of the most complex and time-
consuming phases in the training process for any model. The
lack of transparency in extracting the desired features results in
losing the interpretability of the decision-making methodology
employed by the corresponding model. This raises concerns
that impact human trust in Al, including its fairness and the
ethical aspects of its decisions. In this context, the emergence
of Explainable Artificial Intelligence (XAI), a field dedicated
to uncovering the reasoning behind model predictions, become
a must. Hence, providing explanations that allow humans to
understand, validate, and trust Al-driven decisions.

XAI schemes can be applied to different applications, in-
cluding image classification and semantic segmentation. Both
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of these applications can benefit from XAl in revealing the key
image features that mostly influenced the model prediction,
enabling more interpretability and thus responsible use of Al
in remote sensing. Despite the XAl success achieved in image
classification, extending this success to image segmentation is
challenging due to the spatial correlation between the pixels
and regions.

Among different XAI methods, Attribution methods focus
on assigning importance scores to the input features, indicating
their contribution to a model prediction. Thus, understanding
what features are affecting its decisions[5]. XAI attribution
methods are further divided into different classes: (i) Gradient-
based, where the importance score is computed based on the
gradients of backpropagation, (i) Sampling-based methods
that treat the model as a black box and systematically sample
parts of the input and observe output changes to estimate
feature importance. It is worth mentioning that evaluating the
robustness and efficiency of different XAI methods is essential
for validating their faithfulness and reliability [6].

In this context, this work focuses on proposing a sampling-
based XAI method based on the entropy uncertainty prin-
ciple. It consists of 2 sampling phases: Creation of Base
sampling matrices then the perturbation one for input image
perturbation, followed by a model inference to compute the
target object entropy spatial scores to determine the importance
scores for each reagion in the image. Moreover, to efficiently
evaluate the performance of the proposed Entropy-Centric
XAI method, we propose a new XAl evaluation methodology
that primarily assesses whether highlighted relevant regions
outside the target object are truly influential. The performance
evaluation performed using the WHU dataset for building foot-
print segmentation [7] shows the superiority of our proposed
entropy-centric method compared to the recent XAI methods
adapted for semantic segmentation [8].

The remainder of this paper is organized as follows: Section
IT presents the proposed entropy-centric XAI methodology.
The performance of the benchmarked XAI methods in terms
of the proposed XAI evaluation methodology is analyzed and
discussed in Sections III and IV, respectively.
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II. METHODOLOGY

This section highlights the main principles of the proposed
entropy-centric XAI method, as well as the proposed XAI
evaluation methodology. First of all, we breifly presents the
XAI Sobol method, which motivates our proposed method.

A. Conventional Sobol Method

Sobol indices [9] is a variance-based global sensitivity
method that measures the contribution of input variables to
the output variance of a model. For a model output f(x)
with input features x = {x1,...,Xn}, the total variance D
is decomposed into main and interaction effects:
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where D; denotes the variance contribution of input 7
and higher-order terms represent interactions. The total Sobol

index quantifying the importance of input i, including all its
interactions, is defined as:
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Sobol indices are estimated by systematically perturbing
inputs using quasi-Monte Carlo (QMC) sampling [9], which
improves coverage of the input space and convergence. To
reduce the high computational cost of estimating total-order
indices in high-dimensional settings, the Jansen estimator [9]
is employed. It computes S’Ti using paired sampling matrices
A, B, and C; as:
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Thus, enabling efficient estimation with fewer model eval-
uations.
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B. Proposed Entropy-Centric XAI Method

The proposed Entropy-Centric XAI method utilize Sobol
XAI concept and is based on the entropy methodology that
measures how the perturbation of different input patches
affects the output entropy and hence identifies the regions that
maintain confidence in the segmentation output. The greater
the entropy change upon masking a region, the higher its
attribution score. The binary entropy H € [0, 1]#>*W of the
predicted target class probability pj at each pixel can be
expressed as:

H = —pylog(pr) — (1 — px)log(1 — px) 4
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Through Entropy-Centric we adapt Sobol to image segmen-
tation and continue with developing the entropy methodology.
Adapting to image segmentation necessitates a fundamental
shift from explaining scalar output values, as in classification,
to handling spatially structured outputs. In segmentation tasks,
the primary objective is to interpret the model’s predictions at
the pixel or region level for specific target objects, rather than
for the image as a whole.

To achieve this, each perturbed image forward pass of the
segmentation model yields a spatial score map S, € RE*W |
essentially a probability distribution indicating the likelihood
of the object class at every pixel. The output map correspond-
ing to the target object is isolated by multiplying the model’s
output by the object’s mask M € [0, 1]7>W,

fmask’ed(sc) =

This allows for analyzing the contribution of input regions
to the prediction of the relevant object, discarding spurious
influences elsewhere in the image.

Figure 1 illustrates the Entropy-Centric pipeline. It begins
by initializing the base sampling matrices A and B using
quasi-Monte Carlo (QMC) methods [9], followed by gener-
ating the perturbatlon masks C based on these matrices. The
perturbed images A and C . are subsequently created by
applying the upsampled Aj and C;,; masks according to eq. 6.

ScoOM ®)
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where I € R¥>*W denotes the input image with dimesniosn
H and W. Next, model inference is performed to obtain the
spatial score maps of the perturbed inputs S,/ and S+ . Then

target masking them using eq. 5 to get f,;asked(SA],‘) and
fmasked(Ses ). The Softmax probabilities are then computed

as:

Py. = Soft maske Y
{ A; oftmaz(fmasked( Aj)) )

Pci,j = Softmaw(fmasked(scgij ))

Finally, the importance scores are calculated, after cal-
culating the entropy of the target class from its softmax
probabilities through eq.4, using :

1 N
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where H(C}) and H(A;) denote the entropy values computed
for perturbed and base samples, respectively. We note that
the proposed Entropy-Centric XAI method focuses on the
uncertainty rather than only the output score, which offers a
different explainability perspective.
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Fig. 2. Sample of XAI heatmaps generated by the 3 methods Grad-Cam,Score-Cam and Entropy-Centric with the evaluation framework proposed through
Irrelative Validation and False Sailency Detection methods. The masked images, prediction and IOU maps are based on the Entropy-Centric heatmap.

C. Proposed Evaluation Methodology

XAI performance evaluation remains challenging due to
the absence of a unified evaluation framework, making fair
comparison between XAI methods difficult. The authors in [8]
proposed an XAI evaluation methodology we refer to as
Low-Salience Irrelevance Test (L-SIT) that evaluates whether
regions assigned low importance in the explanation are indeed
irrelevant to the model. L-SIT removes pixels with explanation
values below a chosen threshold and measures the resulting
change in prediction confidence and segmentation accuracy.
Given the explanation heatmap F with ¢ the set of highlighted
pixels above a specific threshold, and 7" the set of target object
pixels of the input image I. The perturbed image by L-SIT
can be expressed as:

I qr=TU¢. ©)]

A small performance drop confirms the irrelevance of
low-salience regions outside the target object, while a large
drop reveals their hidden importance. However, L-SIT cannot
detect cases where unimportant regions are mistakenly given
high salience, which motivates the need for a complementary
evaluation strategy.

To address this limitation, we propose a new XAl evaluation
methodology, denoted as High-Salience Influence Test (H-
SIT), which primarily assesses whether regions outside the
target object but highlighted as important are truly influential.
By removing these out-of-object, high-saliency regions, the
resulting performance deterioration directly reflects their ac-
tual relevance to the model’s decision process. The perturbed
image by H-SIT is defined as:

st =TU¢. (10)

where ¢ is the set of highlighted pixels below a specific thresh-
old. Through the proposed H-SIT XAI evaluation methodol-
ogy, a large drop in the considered metric is expected since
the regions most affecting the model decision are removed,
enabling the identification of falsely highlighted regions that
L-SIT methodology alone cannot capture.

III. RESULTS

This section presents the performance evaluation of the
proposed Entropy-Centric XAI method, Grad-Cam, and Score-
Cam XAI methods [8]. The XAl evaluation is performed using
the L-SIT and the proposed H-SIT XAI evaluation methodol-
ogy. Moreover, the rooftop U-Net architecture segmentation
model [7] trained using the WHU dataset is used as a case
study.

Figure 2 shows a sample of XAI heatmaps generated by
the three methods Grad-Cam, Score-Cam, and the proposed
entropy-centric, out of 142 images. Unlike the Grad-CAM
method, which highlights some in-target class pixels. We
can notice that Entropy-Centric and Score-Cam gave the
better heatmaps by showing that the majority of the highly
highlighted areas consist of buildings and their surroundings.
Clearly giving us insight that the most pixels that affect the
model segmentation results are the building pixels.

To further quantitatively evaluate the reliability of the
benchmarked XAI schemes, L-SIT and the proposed H-SIT
are used in terms of the following metrics: (i) The drop
in the model’s prediction confidence inside the target object
area compared to the original one when I is passed to the
model, (ii) The drop in the Intersection over Union (IoU)
score between the perturbed image prediction and the ground
truth compared to the IoU score of the original prediction
with the ground truth. IoU tells us how much the predicted
object overlaps with the correct object. (iii) The increase in
the Entropy of the target object between the masked image
prediction and the original prediction. Table I shows the
quantitative results for the benchmarked XAI methods where
the threshold is 0.1.

For the L-SIT methodology, the low-importance regions
defined by the heatmaps below threshold 0.1 are masked
out. As expected, this results in a reduction in prediction
confidence and IoU scores, and a rise in entropy, regardless
of the method used. Notably, the proposed Entropy-Centric
outperforms the Grad-CAM and the Score-Cam methods. This
indicates that the Entropy-Centric heatmap more precisely
identifies irrelevant areas, as their removal barely impacts



TABLE I
L-SIT AND H-SIT QUANTITATIVE RESULTS FOR THE THREE METRICS: (I) MEAN OF THE PREDICTION CONFIDINCE SCORE DROP, (1) MEAN OF THE
IOU SCORE DROP, (11I) AND MEAN OF THE ENTROPY SCORE INCREASE AT 0.1 THRESHOLD OVER THE WHU DATASET.

‘ Prediction Confidence ‘ 10U Score ‘ Entropy Score ‘
L-SIT H-SIT L-SIT H-SIT L-SIT H-SIT
XAI Methods ({ better) (1 better) | ({ better) (1 better) | (| better) (1 better)
Entropy-Centric 2% 37.4% 0.7% 44% 3.4% 48.5%
Grad-Cam 27.3% 2.2% 29.7% -0.1% 38.8% 5%
Score-Cam 0.6% 32.3% 4.1% 36.2% 8.9% 45.3%
TABLE II
COMPARATIVE ANALYSIS: GRADIENT-BASED VS. SAMPLING-BASED XAI FOR SEGMENTATION
. Background | Interaction . Primary
XAI Schemes Performance | Stability Reliance Awareness Methodology Granularity Objective
Score-CAM +++ Low Weak Limited Model-Specific | Target-based | Fast Visualization
Entropy-Centric ++++ High Strong High Model-Agnostic | Patch-based Model Auditing

model predictions, segmentation accuracy, or confidence. In
contrast, Grad-Cam suffers from a considerable performance
degradation when low-quality regions are masked, likely due
to less discriminative attribution scores that misclassify impor-
tant pixels as low-impact.

Concerning the proposed H-SIT XAI evaluation methodol-
ogy, which focuses on masking high-importance regions as
determined by each method, reveals complementary insights.
Here, the metrics result in bad performance, reflecting the fact
of masking the high-importance regions. In this context, both
the proposed Entropy-Centric and the Score-Cam methods
consistently yield the largest drops in prediction confidence
and IoU, and the greatest increases in entropy, with the
superiority of the proposed Entropy-Centric method. This
confirms the efficient ability of the proposed Entropy-Centric
method to accurately isolate decision-critical regions, making
the model highly sensitive to their removal. We note that
the Grad-CAM method barely has any drop in its metrics,
which demonstrates its heatmap’s deficiency in giving any
importance to the regions outside the building areas. This is
not always true as segmentation highly relies on the interaction
between image regions.

IV. DISCcUSSION AND CONCLUSION

Besides the quantitative performance superiority of the
proposed Entropy-Centric over the Score-CAM method, Table
IT summarizes how both methods differ fundamentally in their
computational demands, implementation requirements, and the
nature of the explanations they provide for segmentation mod-
els. Score-Cam requires a small multiple of a standard forward
pass, and produces fine-grained attribution maps whose spatial
resolution is tied to the underlying convolutional feature maps.
However, this method requires access to internal activation
maps of the trained model, making it sensitive to architectural
details. In addition, its implementation often relies on model-
specific hooks and careful layer selection, which limits porta-

bility across architectures. In contrast, the proposed Entropy-
Centric operates in a fully black-box manner and relies on
systematic input perturbations, resulting in a substantially
improved stability. Because it does not depend on gradients
or internal representations, its explanations remain consistent
across architectures and naturally extend to pipelines con-
taining non-differentiable components. Although its explana-
tions are patch-based and therefore limited by the chosen
sampling grid, this coarser granularity enables the explicit
analysis of contextual dependence and feature interactions by
measuring confidence or entropy changes when regions are
masked. Consequently, Score-Cam is well-suited for rapid,
fine-resolution visualization, whereas the proposed Entropy-
Centric method provides more robust and implementation-
agnostic explanations that are better aligned with thorough
model analysis and verification.

This work addresses the critical gap in explainable Al
methods for image segmentation by proposing an Entropy-
Centric XAI method. The proposed method calculates the final
relevance scores based on the entropy uncertainty concept.
In addition, we propose a robust XAl evaluation methodol-
ogy denoted as H-SIT. Performance evaluation demonstrates
the superior fidelity of the proposed Entropy-Centric method
over the benchmarked methods. The proposed Entropy-Centric
method is able to effectively isolate irrelevant regions as well
as accurately identify decision-critical areas. While applied
to the building segmentation use case, enabling trustworthy
Al deployment in remote sensing applications, this work
establishes a robust foundation for XAI methods for semantic
segmentation. Future directions include multi-dataset valida-
tion, hybrid XAI methods, and diverse architectures support.
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