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ABSTRACT
The native artificial intelligence (AI) concept is envisioned to be integrated into 6G future
communications. Due to the black-box nature of the majority of AI models, the decision-
making strategy used by these models is critical, risky, and challenging. This issue can be
tackled by developing explainable AI (XAI) schemes that aim to explain the logic behind
the black-box model behavior, and thus, ensure its efficient and safe deployment. In this
context, this chapter highlights the main challenges of the recent AI-based solutions for
wireless communications, in particular, physical (PHY) layer applications. In addition to
that, the latest research efforts toward designing XAI schemes for PHY layer applications
are discussed. As a case study, this chapter presents an XAI-based scheme for channel
estimation in wireless communications, where the presented scheme shows that employing
XAI can offer a bunch of advantages including (1) understanding the black-box model
behavior, (2) reducing the overall computational complexity of the employed AI model,
and (3) improving the performance of the desired application. Finally, a list of future
research directions is provided.
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1.1 INTRODUCTION
Artificial intelligence (AI) is expected to play a crucial role in the overall design
of future 6G networks [34, 4]. In particular, native (AI) will be embedded within
the functionality of all layers [24] to support demands for high data rates and
low latency-critical applications. According to [36], the AI-enabled intelligent
architecture for 6G networks defines several layers, including the intelligent
sensing layer, where accurate environment monitoring is critical for 6G smart
applications like autonomous driving [3]. Consequently, a robust physical (PHY)
layer design is needed to ensure the reliability of the intelligent sensing layer.
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FIGURE 1.1 AI-based PHY layer applications.

Recently, deep learning (DL) has been employed in the PHY layer of wire-
less communications, in particular within the receiver design [20, 29], including
signal classification and detection [30, 28, 8], channel estimation [18, 11], joint
channel estimation and equalization [31], and end-to-end (E2E) DL-based re-
ceiver design [19, 41, 2, 7, 16]. These DL-based solutions have been integrated
into PHY layer applications to provide better performance-complexity trade-
offs and robustness than conventional schemes. Figure 1.1 summarizes the
employment of different DL networks within the orthogonal frequency division
multiplexing (OFDM) receiver design. Among these DL networks, feed-forward
neural network (FNN), convolutional neural network (CNN), and recurrent neu-
ral network (RNN) have been employed in the channel estimation task [11],
where the objective is to use the DL network as denoising until after conventional
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estimated channel. Moreover, DL networks can learn the time and frequency
collection of the wireless channel, hence providing good performance compared
to conventional channel estimation schemes. Moreover, signal detection appli-
cation has been studied in [8, 30, 28] where CNN and transformers have been
employed to classify the received symbols from the received frequency domain
signal.

Apart from single-task DL-based solutions, joint channel estimation, and
equalization in addition to the detection have been studied in [19, 31]. In
this context, the authors in [31] have proposed an efficient transformer-based
scheme called SigT to detect the received bits from the received frequency
domain signal. Moreover, an ablation study is performed to select the best
model architecture. This ablation study is based on removing some layers, i.e.,
convolutional, pooling, dropout, etc., and measuring the train and test accuracy
of the proposed architecture. Finally, the architecture corresponding to the
highest training and testing accuracies is chosen. A similar objective has been
studied in [19] where the DeepRx receiver is proposed to estimate the received
bits from the received frequency domain signal, the received pilots, and the
channel response.

A vast of research works have focused on the E2E DL-based receiver de-
sign [16]. We note that such design consists of implementing a transmitter,
channel, and receiver as a single DL black-box network referred to as an auto-
encoder, as shown in Figure 1.1. In [38] a neural receiver consisting of dense
layers has been proposed to predict the transmitted bits based on jointly process-
ing the received OFDM symbols. In this work, the while receiver is considered
as a black-box DL model. Another work has been proposed in [2], where a
convolutional residual neural network is used to predict the log-likelihood ratios
(LLRs) of the received bits taking the received signal. After that, the predicted
LLRs are fed to the channel decoder after a deinterleaving step to detect the final
received bits. A multiuser multiple-input multiple-output (MU-MIMO) receiver
with 5G New Radio (5G NR) has been proposed in [7], where consecutive CNN
layers are used to exploit the time and frequency correlation of the channel, in
addition to a graph neural network (GNN) to handle multiple users. The pro-
posed receiver takes the received post-FFT signal, the positional encoded pilot
distance, in addition to optionally fed the noise power and the estimated channel
matrix within the inputs. We note that the discussed E2E DL-based receivers
employ real-valued DL networks, however, a complex-valued DL-based OFDM
receiver has been proposed in [41] where two CNN networks are proposed to
work within a 2-stage operations. The first network performs channel estima-
tion and equalization, and the second is dedicated to the received bits detection.
Similar to the work accomplished in [31], an ablation study is performed using
6 different CNN structures to select the best architecture to be employed. It
is worth mentioning that regardless of the good performance offered by differ-
ent E2E DL-based receivers in comparison to the conventional receivers, still
the intuition behind selecting the model inputs and architecture is empirically
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Application Reference DL Model
Architecture Inputs Output

Channel
Estimation

[11] FNN, RNN, CNN Conventional
estimated channel

Denoised
estimated
channel

Signal
Detection

[8] CNN
Received frequency

domain signal
Channel resposne

Demodulated
symbols

[29] CNN Received frequency
domain signal

[27] Transformer Received frequency
domain signal

Joint
Estimation

Equalization
Detection

[30] Transformer Received frequency
domain signal Received

bits

[18] CNN

Received frequency
domain signal

Received pilots
Channel response

E2E
DL-based
Receiver

[40] DCCN Received time
domain signal

LLRs
[2] CNN + ResNet Received time

domain signal

[7] CNN + FNN

Received frequency
domain signal

Encoded pilot distance
Noise power

[15] CNN + ResNet Received frequency
domain signal

TABLE 1.1 DL-based PHY layer applications (the list is not exhaustive).

performed. Therefore, it is not possible to efficiently optimize the DL-based
solutions. Table 1.1 summarizes the surveyed DL-based solution for different
PHY layer applications.

1.2 TOWARD XAI-BASED SOUTIONS
The DL-based PHY layer solutions encounter three main concerns:

• High computational complexity: High-complex DL architectures are em-
ployed to guarantee good performance. However, this is impractical in IoT
and low-latency critical applications such as autonomous driving. Therefore,
reducing the computational complexity while preserving or improving the
overall system performance is challenging.

• Identifying the relevant inputs: filtering the most important DL model inputs
is crucial for optimizing its performance. Knowing that the majority of DL-
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FIGURE 1.2 The XAI-based long-term evolution of the PHY layer Design. [40]

based solutions use an empirical input selection strategy, finding a smart input
filtering strategy is necessary to optimize the system’s performance.

• Trustworthy deployment: The majority of the utilized DL models are black-
box models. Consequently, researchers and industrial leaders are not able to
trust the employment of these models in real-case sensitive applications [22].

It is worth mentioning that the discussed concerns are mainly due to the black-
box nature of the utilized DL models, which in turn prevents researchers from
understanding the logic behind the decision-making strategy of these models.
Therefore, designing XAI-based solutions enables safe efficient, and robust AI
employment in real-case scenarios. Figure 1.2 illustrates the main advantages
of integrating the XAI schemes into the PHY layer design. As we can notice,
the XAI post-processing of the DL black-box offers two main advantages listed
below:

• Smart data-driven DL-based solution: Employing XAI schemes allows the
smart identification of the model inputs, hence the collected data from the
environment can be filtered accordingly. Therefore the employed DL model
can focus on the main relevant inputs to improve its performance. Moreover,
it has been shown in [15] that considering the whole received data as an input
to the model degrades the model performance since additional irrelevant
inputs can be considered as noise and thus it is essential to filter them before
employing the DL processing.

• Efficient model-driven DL-based solution: Another key advantage in the XAI
integration within the PHY layer lies in providing internal interpretability
of the employed black-box model. Consequently, it is possible to assign
neuron-level relevance scores for the employed model architecture. Therefore,
optimizing the model architecture by removing the irrelevant neurons will
reduce the overall computational complexity while preserving the model’s
performance in addition to providing a clear and reasonable interpretation of
the model behavior.
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The majority of XAI-related works in the literature are surveys and reviews
about the guidelines and importance of using XAI in wireless communications.
The main definitions, concepts, and taxonomy of XAI are discussed in [17]. A
Novel Knowledge-powered framework for network automation that effectively
adapts to the dynamic changes of complex communication systems has been
proposed in [35]. The authors in [6] provide a comprehensive survey on the use
of explainable artificial intelligence (XAI) to design a trustworthy explainable
open radio access network (O-RAN) architecture. In addition to that, Shapley
additive explanations (SHAP) XAI scheme has been employed to assign the
importance of the features within the context of the Streamlined Automation-
Native 6G Networks [25]. SHAP XAI scheme has been also employed for
energy-efficient resource allocation [5, 27, 23], where it assigns importance to
the features used by the deep reinforcement learning (DRL) agent at each state.
These features could be the utilized bandwidth, number of active antennas,
number of connected users, and the average data rate. XAI has been employed
in the internet-of-things (IoT) networks [21], where the authors in [42] have
proposed a novel model-agnostic XAI scheme denoted as transparency relying
upon statistical theory (TRUST) for numerical applications. The TRUST scheme
is oriented toward cybersecurity of the industrial IoT (IIoT), where it outperforms
the local interpretable model-agnostic explanations (LIME) scheme [32] in terms
of performance, speed, and explainability.

Knowing that the recent XAI schemes focus mainly on network optimization,
resource allocation, and secure IoT. Hence, they can not be adapted to the
PHY layer applications since such applications lack clear discriminative features
within the model inputs. Therefore, this chapter aims to highlight the recent
advances in employing XAI schemes for PHY layer applications in wireless
communications, specifically, channel estimation [15]. We note that channel
estimation here is just a case study and the discussed XAI scheme could be
easily adapted to any other PHY layer application.

1.3 SIGNAL MODEL
This section presents the considered system model in this chapter based on
the IEEE 802.11p standard [1]. Let 𝒔𝑖 ∈ C𝐾×1 denotes the 𝑖-th transmitted
frequency-domain OFDM symbol that can be expressed as:

𝒔𝑖 [𝑘] =


𝒔𝑖,𝑑 [𝑘], 𝑘 ∈ {𝐾}d
𝒔𝑖, 𝑝 [𝑘], 𝑘 ∈ {𝐾}p
0, 𝑘 ∈ {𝐾}n

(1.1)

where 0 ≤ 𝑘 ≤ 𝐾 − 1 denotes the subcarrier index. We note that 𝐾on useful
subcarriers are used where 𝐾on = 𝐾𝑝 + 𝐾𝑑 . 𝒔𝑖, 𝑝 ∈ C𝐾𝑝×1 and 𝒔𝑖,𝑑 ∈ C𝐾𝑑×1

represent the allocated pilot symbols and the modulated data symbols at a set
of subcarriers denoted {𝐾}p and {𝐾}d, respectively. 𝐾𝑛 = 𝐾 − 𝐾on denotes the
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null guard band subcarriers. 𝐾cp samples are added to the time-domain OFDM
symbol resulting in 𝒙𝑖 ∈ C𝐾+𝐾cp×1.

The 𝑖-th received frequency-domain OFDM symbol 𝒚𝑖 ∈ C𝐾on×1 is expressed
as follows:

𝒚𝑖 [𝑘] = 𝒉𝑖 [𝑘]𝒔𝑖 [𝑘] + 𝒆𝑖 [𝑘] + 𝒗̃𝑖 [𝑘], (1.2)

𝒉𝑖 ∈ C𝐾on×1, 𝒗̃𝑖 ∈ C𝐾on×1, and 𝒆𝑖 ∈ C𝐾on×1 refer to the frequency-time
response of the doubly-selective channel, the additive white Gaussian noise
(AWGN) at the 𝑖-th OFDM, and the Doppler-induced inter-carrier interference
derived in [12], respectively. 𝒆𝑖 can be expressed as:

𝒆𝑖 [𝑘] =
1
𝐾

𝐾−1∑︁
𝑞=0
𝑞≠𝑘

𝐾−1∑︁
𝑛=0

𝒉𝑖 [𝑞, 𝑛]𝑒− 𝑗2𝜋
𝑛(𝑘−𝑞)
𝐾 𝒔𝑖 [𝑞] . (1.3)

1.4 FNN-BASED CHANNEL ESTIMATION SCHEMES
Among different OFDM receiver operations, the accuracy of the channel es-
timation highly impacts the overall performance and reliability of the OFDM
receiver. This is because a precisely estimated channel influences the follow-
up equalization and decoding operations at the receiver [11]. In this context,
channel estimation is the first challenging task within the OFDM receiver chain
due to the nature of the wireless channel especially in mobile applications where
the channel is doubly selective. We note that in a mobile wireless environment,
transmitted signals propagate through many paths with different attenuations, de-
lays, and Doppler shifts resulting from the motion of network nodes within the
surrounding environment. As a result, the wireless channel becomes frequency-
selective and time-varying which defines its doubly selective nature.

FNN networks have been widely used in literature as a post-processing unit
added to some initial channel estimation due to their low computational complex-
ity compared to other DL networks such as CNNs and RNNs. Similarly to the
other DL-based PHY layer solutions, FNN-based channel estimation schemes
can achieve good performance. Still, the logic behind choosing the FNN ar-
chitecture, i.e., the number of hidden layers and neurons as well as the suitable
FNN inputs is unclear. We note that the majority of the FNN-based channel
estimation schemes use a 3 hidden layer FNN architecture with different con-
figurations. In [26], an FNN-based scheme has been proposed where the FNN
takes the received signal, received pilots, and previously estimated channel to
predict the current channel estimates. The utilized FNN architecture consists of
3 hidden layers with 500, 250, and 120 neurons, respectively. Simulation results
show that using this FNN input combination improves performance. Another
FNN-based channel estimation scheme has been proposed in [37] where the
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Reference
DL Model

Architecture Inputs

[35] 512-256-128 𝒉̂LS𝑖 , 𝒉̂FNN𝑖−1

[25] 500-250-120 𝒚𝑖 , 𝒔𝑖,𝑝 , 𝒉̂FNN𝑖−1

[17] 40-20-40 𝒉̂DPA𝑖

[10] 15-15-15 𝒉̂STA𝑖

[13] 15-15-15 𝒉̂TRFI𝑖

TABLE 1.2 FNN-based channel estimation schemes (the list is not exhaustive).

least squares (LS) estimated channel combined with the previously estimated
channel are fed as an input to a 3 hidden layer FNN consisting of 512, 256,
and 128 neurons, respectively. Employing LS as an FNN input improves the
channel estimation accuracy and provides comparable performance to the linear
minimum mean square error (LMMSE) channel estimation scheme.

Recently, the authors in [11] show that improving the conventional channel
estimation accuracy allows the employment of low-complex FNN architectures.
In [18], the authors proposed an FNN-based channel estimation scheme that
applies data-pilot aided (DPA) channel estimation prior to a 3 hidden layer FNN
consisting of 40, 20, and 40 neurons, respectively. Similarly, in [10] and [14]
the authors used a 3 hidden layer FNN architecture with 15 neurons per layer on
top of the conventional spectral temporal averaging (STA) [9] and time-domain
reliable test frequency domain interpolation (TRFI) [39] channel estimation
schemes. This computational complexity reduction is motivated by the fact that
the conventional STA and TRFI channel estimation schemes outperform the DPA
channel estimation. Hence, STA-FNN and TRFI-FNN outperform the DPA-
FNN [18] while recording a substantial computational complexity decrease.
Table 1.2 summarizes the discussed FNN-based channel estimation schemes. In
the following, we present the channel estimation steps employed mainly by the
STA-FNN, and TRFI-FNN channel estimation schemes.

1.4.1 STA-FNN
The STA-FNN [10] channel estimation is based on the DPA estimation that aims
to track the doubly selective channel variations by using the received demapped
data subcarriers of the previously received symbols. These demapped subcarriers
are then used to estimate the channel for the existing symbol such that

𝒅𝑖 [𝑘] = 𝔇
( 𝒚𝑖 [𝑘]
𝒉̂DPA𝑖−1 [𝑘]

)
, 𝒉̂DPA0 [𝑘] = 𝒉̂LS [𝑘], (1.4)
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where 𝔇(.) refers to the demapping operation to the nearest constellation point
following the employed modulation order. 𝒉̂LS signifies the LS estimated channel
at the received preambles, such that

𝒉̂LS [𝑘] =

𝑃∑
𝑢=1

𝒚 (𝑝)𝑢 [𝑘]

𝑃𝚲[𝑘] , 𝑘 ∈ {𝐾}on , (1.5)

where 𝚲 denotes the frequency domain predefined preamble sequence. After
that, the final DPA channel estimates are updated in the following manner

𝒉̂DPA𝑖 [𝑘] =
𝒚𝑖 [𝑘]
𝒅𝑖 [𝑘]

. (1.6)

Finally, frequency and time-domain averaging are applied on top of the DPA
estimated channel as proposed in the STA channel estimation scheme [9] where

𝒉̂FD𝑖 [𝑘] =
𝜆=𝛽∑︁
𝜆=−𝛽

𝜔𝜆 𝒉̂DPA𝑖 [𝑘 + 𝜆], 𝜔𝜆 =
1

2𝛽 + 1
. (1.7)

𝒉̂STA𝑖 [𝑘] = (1 −
1
𝛼
) 𝒉̂STA𝑖−1 [𝑘] +

1
𝛼
𝒉̂FD𝑖 [𝑘] . (1.8)

FNN is utilized as a post-processing unit after the conventional STA scheme [10].
STA-FNN captures more the time-frequency correlations of the channel samples,
apart from correcting the conventional STA estimation error. Furthermore, the
STA-FNN channel estimation scheme records an error floor in a high SNR
region. This limitation arises from fixing the frequency and time-averaging
coefficients in the conventional STA channel estimation. Consequently, the
final STA estimated channel is considered as a linear combination between
𝒉̂STA𝑖−1 [𝑘] (1.8) and 𝒉̂FD𝑖 (1.7). However, this linear combination is not always
valid, especially in real-case scenarios due to the doubly selective nature of the
wireless channel.

1.4.2 TRFI-FNN
To further improve the performance in high SNR regions, TRFI-FNN has been
proposed [14] where the same FNN architecture as in [10] is integrated with
the conventional TRFI channel estimation [39]. We note that TRFI divided the
received subcarriers into reliable 𝑅𝑆𝑖 and unreliable subcarriers 𝑈𝑅𝑆𝑖 , where
cubic interpolation is used to estimate the channel for the unreliable subcarriers.
This procedure can be expressed in the following manner
• Equalize the previously received OFDM symbol by 𝒉̂TRFI𝑖−1 [𝑘] and 𝒉̂DPA𝑖 [𝑘],

such that

𝒅′𝑖−1 [𝑘] = 𝔇
( 𝒚𝑖−1 [𝑘]
𝒉̂DPA𝑖 [𝑘]

)
, 𝒅′′𝑖−1 [𝑘] = 𝔇

( 𝒚𝑖−1 [𝑘]
𝒉̂TRFI𝑖−1 [𝑘]

)
. (1.9)



10

• According to the demapping results, the subcarriers are divided into 𝑅𝑆𝑖 and
𝑈𝑅𝑆𝑖 as follows{

𝑅𝑆𝑖 ← 𝑅𝑆𝑖 + 𝑘, 𝒅′𝑖−1 [𝑘] = 𝒅′′
𝑖−1 [𝑘]

𝑈𝑅𝑆𝑖 ← 𝑈𝑅𝑆𝑖 + 𝑘, 𝒅′𝑖−1 [𝑘] ≠ 𝒅′′
𝑖−1 [𝑘]

. (1.10)

• As a final step, frequency-domain cubic interpolation is employed to estimate
the channels at the𝑈𝑅𝑆𝑖 as follows

𝒉̂TRFI𝑖 [𝑘] =
{

𝒉̂DPA𝑖 [𝑘], 𝑘 ∈ 𝑅𝑆𝑖
Cubic Interpolation, 𝑘 ∈ 𝑈𝑅𝑆𝑖

. (1.11)

We note that frequency-domain interpolation enhances the performance.
However, the main drawback of the TRFI channel estimation lies in the strat-
egy used to divide the 𝑅𝑆𝑖 and 𝑈𝑅𝑆𝑖 subcarriers. Since the condition where
𝒅′
𝑖−1 [𝑘] ≠ 𝒅′′

𝑖−1 [𝑘] is more dominant in high mobility scenarios. Hence, the
number of selected 𝑅𝑆𝑖 becomes limited thus degrading the performance of the
employed cubic interpolation.

1.5 XAI FOR CHANNEL ESTIMATION
The authors in [15] proposed a perturbation-based model-agnostic global XAI
scheme called XAI-CHEST which jointly performs the channel estimation task
as well as provides the corresponding reasonable explanations. XAI-CHEST
scheme consists mainly of two concatenated FNN models called the interpretabil-
ity model 𝑁 and the utility model 𝑈, respectively. The 𝑈 model corresponds to
the black-box FNN model which is responsible for doing the channel estimation
task taking as an input the conventional estimated channel ˆ̃𝒉′

Φ𝑖
∈ R2𝐾on×1, where

Φ ∈ [STA, TRFI]. we note that the𝑈 model is trained prior to the integration of
the 𝑁 model. Hence, the weights of the 𝑈 model denoted as 𝜃𝑈 are considered
to be frozen while the training of the 𝑁 model.

The key idea of the XAI-CHEST scheme lies in the functionality of the 𝑁
model, which is trained to produce a noise-weight mask 𝒃′

Φ𝑖
that highlights

the importance of the conventional estimated channel vector ˆ̃𝒉′
Φ𝑖

. High 𝒃′
Φ𝑖
[𝑘]

signifies that the corresponding subcarrier is irrelevant and thus it could be
discarded from ˆ̃𝒉′

Φ𝑖
. In contrast, low 𝒃′

Φ𝑖
[𝑘] reveal the importance of including

the corresponding subcarrier within ˆ̃𝒉′
Φ𝑖

. We note that generating 𝒃′
Φ𝑖

is subject
to preserving the performance of the initially pre-trained𝑈 model while feeding
the noisy conventional estimated channel as an input to the𝑈 model. The whole
process of the XAI-CHEST is summarized as follows:

1. training the𝑈 model with ˆ̃𝒉′
Φ𝑖

as an input and save the𝑈 model weights 𝜃𝑈 .

2. Generate the noise weight mask 𝒃′
Φ𝑖

by the 𝑁 model with ˆ̃𝒉′
Φ𝑖

as an input.
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FIGURE 1.3 Perturbation-based XAI-CHEST scheme.

3. Multiply the generated noise mask 𝒃′
Φ𝑖

by a random noise.

4. Generate a noisy conventional estimated channel ˆ̃𝒉′′
Φ𝑖

by adding the weighted
noise from step 3 to the conventional estimated channel.

5. Fed ˆ̃𝒉′′
Φ𝑖

as an input to the pre-trained𝑈 model and measure the mean squared
error (MSE) loss.

6. Update the 𝑁 model weights 𝜃𝑁 by minimizing the customized loss between
the MSE obtained in step 5 and the generated noise weight mask from step
2. As a result, the 𝑁 model is trained in order to minimize the MSE loss of
the𝑈 model taking into consideration the added noise.

The XAI-CHEST scheme allows the 𝑁 model to induce noise on the 𝑈
model inputs without degrading its performance. hence, the 𝑁 model will only
induce high noise on the inputs that are not substantial to the 𝑈 model’s proper
functioning. Based on the generated noise mask by the 𝑁 model, the 𝑈 model
inputs can be classified as either relevant or irrelevant inputs, where re-training
the 𝑈 model taking only the relevant subcarriers leads to a significant perfor-
mance improvement. Moreover, the explanations offered by the𝑈 model can be
exploited to reduce its computational complexity cost. Figure 1.3 illustrates the
full process performed by the XAI-CHEST scheme. We note that more technical
details can be found in [15].

1.6 PERFORMANCE EVALUATION
This section illustrates the performance evaluation of the studied XAI scheme.
We note that based on the obtained XAI results, the inputs of the studied FNN-
based channel estimation schemes are divided into relevant, and irrelevant sub-
carriers. After that, the bit error rate (BER) performance is analyzed considering
each configuration, where the impact of the conventional channel estimation on
the obtained XAI results is discussed.
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TABLE 1.3 Characteristics of the employed channel models.
Channel model Average path gains [dB] Path delays [ns]

VTV-EX [0, 0, 0, -6.3, -6.3, -25.1,
-25.1, -25.1, -22.7, -2.27, -22.7]

[0, 1, 2, 100, 101, 200,
201, 202, 300, 301, 302]

VTV-SDWW [0, 0, -11.2, -11.2, -19, -21.9,
-25.3, -25.3, -24.4,-28, -26.1, -26.1]

[0, 1, 100, 101, 200, 300,
400, 401, 500, 600, 700, 701]

1.6.1 Simulation Setup
The performance evaluation aims to study the impact of conventional channel
estimation on the provided explanations obtained by the studied XAI scheme. In
this context, we consider two channel models [33]: (i) Low-frequency selectivity
(LFS), where VTV Expressway (VTV-EX) scenario is employed. (ii) High-
frequency selectivity (HFS), where VTV Expressway Same Direction with Wall
(VTV-SDWW) scenario is considered, as shown in Table 1.3. In both scenarios,
Doppler frequency 𝑓𝑑 = 1000 Hz, and QPSK modulation is considered. Both
the𝑈 and 𝑁 models are trained using a 100, 000 OFDM symbols dataset, splitted
into 80% training, and 20% testing. ADAM optimizer is used with a learning
rate 𝑙𝑟 = 0.001 with batch size equals 128 for 500 epoch. Simulation parameters
are based on the IEEE 802.11p standard [11], where the comb pilot allocation is
used so that 𝐾𝑝 = 4, 𝐾𝑑 = 48, 𝐾𝑛 = 12, and 𝐼 = 50. Table 1.4 summarizes the
simulation parameters considered in this work.

TABLE 1.4 Parameters of the studied FNN-based channel estimation schemes.

Parameter Values

FNN (Hidden layers; Neurons per layer) (3;15-15-15)

Activation function ReLU

Number of epochs 500

Training samples 800000

Testing samples 200000

Batch size 128

Optimizer ADAM

Loss function MSE

Learning rate 0.001

Training SNR 40 dB

1.6.2 BER Performance Analysis
To illustrate the efficiency of the XAI-CHEST scheme, we first simulate the
BER performance considering several combinations of different relevant and
irrelevant subcarriers. These combinations are generated based on the generated
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FIGURE 1.4 BER performance of relevant and irrelevant subcarriers employing the STA-FNN
channel estimation scheme and the LFS channel model.

noise mask by the 𝑁 model shown in Figure 1.4(a). For simplicity, we used
the LFS channel model with the STA-FNN channel estimation scheme. As we
can notice the distribution is shifted towards one, where most subcarriers are
assigned noise weight equal to one. This signifies that in simple scenarios like the
LFS channel model, the STA-FNN model ignores the majority of the subcarriers
to refine the conventional STA estimated channel. A nice observation is that the
pilot subcarriers are assigned the lowest noise weight, i.e., 0.1. This reveals that
the STA-FNN model cannot neglect the estimated channels at the pilots, and
considering them is crucial for high estimation accuracy. This observation is
further highlighted in Figure Figure 1.4(b), where we can notice that employing
only the pilot subcarriers within the STA-FNN model input gives the best BER
performance. Moreover, adding more relevant subcarriers to the pilots is not
beneficial. Hence, considering only the pilots in the LFS channel model is
enough, and there is no need to consider any other subcarriers. More details on
selecting the optimal threshold to filter the relevant subcarriers are found in [13].

To study the impact of the initial channel estimation on the generated noise
weights we considered both the STA-FNN and TRFI-FNN channel estimation
schemes. We note that the TRFI-FNN outperforms the STA-FNN scheme in
high SNR regions due to the employed cubic interpolation in the conventional
TRFI channel estimation [11]. Hence, we expect that the TRFI-FNN scheme
will require fewer relevant subscribers since we are training the 𝑁 model on 40
dB SNR. This expectation is validated in both LFS and HFS channel models as
shown in Figure 1.5. We can clearly notice from Figure 1.5(a) that the generated
noise weights for the TRFI estimated channels are either relevant or irrelevant,
i.e., the assigned noise weight is either 0.1 or 1. Hence, when the frequency
selectivity of the channel is low, the pilot subcarriers are enough regardless of
the employed initial channel estimation prior to the FNN model processing. The
impact of the initial channel estimation is more dominant in the HFS channel
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FIGURE 1.5 Performance evaluation of the studied STA-FNN and TRFI-FNN channel estimation
schemes employing the LFS and HFS channel models.

estimation as we can notice in Figure 1.5(c), where the distribution of 𝒃′STA𝑖
is distributed towards zero signifying that the STA-FNN needs more relevant
subcarriers in refining the STA estimated channel. On the contrary, 𝒃′TRFI𝑖 is
still shifted towards one even though the scenario is more complicated compared
to employing the LFS channel model. This is further validated in the BER
simulations, Figure 1.5(d), where the TRFI-FNN model requires 16 relevant
subcarriers, whereas, the STA-FNN model requires 28 relevant subcarriers to
achieve the best possible performance. Therefore, we can conclude that as the
accuracy of the initial channel estimation improves, fewer relevant subcarriers
are required and vice-versa. Moreover, optimizing the inputs of the FNN model
contributes to reducing the overall computational complexity as discussed in [13].

1.7 CONCLUSION
Designing trustworthy efficient AI-based solutions is critical in future 6G com-
munications. This chapter highlighted the recent advances in the XAI-based
schemes for physical layer applications, where channel estimation is considered
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as a case study. First of all, different DL-based physical layer schemes have been
surveyed, where the main challenges encountered in the practical implementation
of such schemes are well-defined. After that, the long-term evolution of the XAI
in the physical layer design is presented where smart data-driven and efficient
model-driven solutions can be designed. A perturbation-based XAI scheme for
channel estimation denoted as XAI-CHEST is then presented and tested on two
recent FNN-based channel estimation schemes. XAI-CHEST scheme aims to
filter the relevant model inputs by inducing high noise on the irrelevant inputs
without harming the model’s performance. Thus, enabling a trustworthy, opti-
mized, and robust channel estimation. Simulation results reveal that employing
only the relevant elements within the channel estimation leads to a significant
improvement in the BER performance while optimizing the FNN input. More-
over, filtering the relevant inputs is highly related to the scenario, wherein the
HFS channel, the FNN-based channel estimation model requires more relevant
inputs in comparison to the LFS channel scenario. Finally, we concluded that
improving the initial channel estimation prior to the FNN processing reduces
the required relevant inputs needed to achieve the best possible performance.
As a future perspective, the overall optimization of the DL model, i.e., selecting
the relevant inputs as well as optimizing the model architecture simultaneously
is an important research direction. Moreover, proposing gradient-based XAI
schemes is crucial since such schemes provide better interpretability compared
to perturbation-based schemes due to employing the internal model architecture
in manipulating the relevance scores.
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