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ABSTRACT

The support of artificial intelligence (Al) based decision-making is a key element in future 6G networks.
Moreover, Al is widely employed in critical applications such as autonomous driving and medical diagnosis.
In such applications, using Al as black-box models is risky and challenging. Hence, it is crucial to
understand and trust the decisions taken by these models. Tackling this issue can be achieved by developing
explainable AI (XAI) schemes that aim to explain the logic behind the black-box model behavior, and
thus, ensure its efficient and safe deployment. Highlighting the relevant inputs the black-box model uses to
accomplish the desired prediction is essential towards ensuring its interpretability. Recently, we proposed
a novel perturbation-based feature selection framework called XAI-CHEST and oriented toward channel
estimation in wireless communications. This manuscript provides the detailed theoretical foundations of
the XAI-CHEST framework. In particular, we derive the analytical expressions of the XAI-CHEST loss
functions and the noise threshold fine-tuning optimization problem. Hence the designed XAI-CHEST
delivers a smart low-complex one-shot input feature selection methodology for high-dimensional model
input that can further improve the overall performance while optimizing the architecture of the employed
model. Simulation results show that the XAI-CHEST framework outperforms the classical feature selection
XAI schemes such as local interpretable model-agnostic explanations (LIME) and shapley additive ex-
planations (SHAP), mainly in terms of interpretability resolution as well as providing better performance-
complexity trade-off.

INDEX TERMS 6G, Al, XAlI, perturbation-based, feature selection, channel estimation

I. INTRODUCTION

RTIFICIAL intelligence (AI) is expected to play a

crucial role in the overall design of future networks. In
particular, 6G will transform the classical Internet of Things
(IoT) to “connected intelligence”, by leveraging the power of
Al to connect billions of devices and systems worldwide [1].
This concept is defined as native (AI) which is a key element
that differentiates 6G networks from the previous wireless
networks. In native Al, distributed AI will be embedded
within the functionality of all layers [2] to support demands
for high data rates and low latency-critical applications.

Generally speaking, the Al-enabled intelligent architecture
for 6G networks defines several layers including the intelli-
gent sensing layer [3]. It is worth mentioning that robust
environment monitoring and data detection are of great
interest in 6G smart applications like autonomous driving [4].
Note that ensuring the reliability of the intelligent sensing
layer is highly impacted by the channel estimation accuracy
since a precisely estimated channel response influences the
follow-up equalization and decoding operations at the re-
ceiver, therefore, it affects the sensing accuracy [5]. In this
context, channel estimation is one of the major physical
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(PHY) layer issues due to the doubly-selective nature of
the channel in mobile applications. Conventional channel
estimation schemes such as least squares (LS) ignores the
presence of noise in the estimation process and requires the
transmission of a large number of pilots which decreases the
transmission data rate. Whereas, the linear minimum mean
square error (LMMSE) channel estimator provides good
performance assuming the prior knowledge of the channel
and noise statistics in addition to its high computational
complexity.

A. DL-BASED CHANNEL ESTIMATION
Recently, deep learning (DL) has been employed in the PHY
layer of wireless communications [6], including channel
estimation [7]-[10], due to its ability in providing good
performance-complexity trade-offs. Among different DL net-
works, feed-forward neural networks (FNNs) have been
widely used as a post-processing unit following conventional
channel estimators. In [11], the authors proposed an end-to-
end FNN-based scheme for channel estimation and signal
detection, where it directly detects the received bits from
the received signal. The proposed FNN model consists of 3
hidden layers with 500, 250, and 120 neurons, respectively.
We note that in this scheme the FNN model is trained to
predict 16 bits only, hence, several concatenated models are
needed according to the total number of transmitted bits.
Using the same FNN model proposed in [11], the authors
in [12] proposed an FNN-based channel estimation scheme
that is used to predict the channel response using the received
signal, received pilots, and previously estimated channel.
Simulation results show that using the previously estimated
channel as an FNN input improves the channel estimation
accuracy. Another FNN-based channel estimation scheme
has been proposed in [13], where LS channel estimation
is first applied and combined with the previously estimated
channel to be fed as an input to a 3 hidden layer FNN
consisting of 512, 256, and 128 neurons, respectively. As
reported in [13], employing LS as an FNN input improves
the channel estimation accuracy and provides a comparable
performance to the LMMSE channel estimation scheme.
To further improve the performance while preserving low
computational complexity, the authors in [7]-[9] tried a
different strategy that is based on improving the conventional
channel estimation accuracy and employing low complex
FNN models as post-processing units. In [7], the authors
proposed an FNN-based channel estimation scheme that
applies data-pilot aided (DPA) channel estimation on top
of LS channel estimation. After that a 3 hidden layer FNN
consisting of 40, 20, and 40 neurons, respectively is utilized.
Simulation results reveal that improving the initial channel
estimation allows the use of a low-complex FNN model
while recording a significant performance improvement in
comparison to the conventional channel estimation schemes.
Similarly in [8] and [9] the authors proposed two FNN-based
channel estimation schemes that employ spectral temporal

averaging (STA) [14] and time-domain reliable test fre-
quency domain interpolation (TRFI) [15] channel estimation
before the FNN model which consist of 3 hidden layers with
15 neurons each. STA-FNN and TRFI-FNN outperform the
DPA-FNN [7] while recording a substantial computational
complexity decrease.

In addition to FNN models, recurrent neural network
(RNN) and convolutional neural network (CNN) models
have been also used within the channel estimation by also
trying to combine several inputs such as the received signal,
pilots, and initially estimated channel. RNN-based channel
estimation schemes [16]-[18] can provide better channel
tracking capability in comparison to the FNN-based channel
estimation. Whereas, CNN-based channel estimation [19],
[20] is used in the frame-by-frame channel estimation,
where the previous, current, and future pilots are employed
in the channel estimation for each received signal. Thus,
improving the channel estimation accuracy with the cost of
a higher computational complexity as well as inducing high
processing time in comparison to the RNN and FNN-based
channel estimation. We note that in this work we focus on
the FNN-based channel estimation since we are targeting
low-complex low-latency DL-based solutions.

There exist three main issues concerning the discussed
channel estimation schemes which can be defined as follows:
(i) Identifying the relevant inputs: as previously discussed,
the majority of DL-based channel estimation schemes use a
combination of information as an input to the utilized DL
model without any clear criteria. We note that the classi-
cal input selection XAI schemes such as shapley additive
explanations (SHAP) and local interpretable model-agnostic
explanations (LIME) can not be efficiently used in channel
estimation due to the high dimensionality of the DL model
input vector in addition to partially consider the correlations
between the inputs. Hence, is there a way to better
select the DL black-box model high-dimensional model
inputs? (ii) High computational complexity: to guarantee
good performance, highly complex DL architectures are
employed. However, motivated by the fact that low-complex
architectures are required in low-latency applications, so is
there a real need for such high-complex architectures?
(iii) Trustworthiness: Despite the good generalization and
performance abilities offered by different DL-based channel
estimation schemes, they lack trustworthiness since they are
considered as “black box” models. Consequently, researchers
and industrial leaders are not able to trust the employment
of these models in real-case sensitive applications [21].
Therefore, is there a way to provide interpretability to
the decision-making strategy employed DL black box
models?

The mentioned issues can be tackled by developing ex-
plainable artificial intelligence (XAI) schemes that provide a
reasonable explanation of the decisions taken by black-box
models. Thus, ensuring the transparency of the employed
models by transforming them from black-box into white-
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Figure 1. XAl categories, concepts, and taxonomy.

box models that can be safely employed in practice. In
the following paragraphs, we will discuss the main XAI
concepts, taxonomy, and deployment within the wireless
communication research domain.

B. XAl MAIN CONCEPTS, CATEGORIES, AND
TAXONOMY
XAI defines four main concepts as shown in Figure 1: (i)
Interpretability: is based on the model design and it refers
to how much the black-box model can be understood by
humans. For example, decision tree models have good inter-
pretability since a human can easily understand their logic. ii)
Explainability: is the ability to clarify and justify a particular
prediction performed by the black-box model. Hence, it aims
to clarify the internal functioning of the employed model.
(iii) Trustworthiness: is the ability to make professionals feel
confident in the decisions taken by the black-box model.
(iv) Causality: is related to the generalization ability of the
black-box model, where models should be able to detect
cause-effect relations and adapt to environmental changes.
Generally speaking, XAI methods can be divided into two
main categories [22]: (i) Perturbation-based or gradient-free
methods, where the concept is to perturb input features by
masking or altering their values and record the effect of
these changes on the model performance. (ii) Gradient-based
methods where the gradients of the output are calculated
with respect to the input via back-propagation and used to
estimate importance scores of the input features. Moreover,
in terms of the provided explanations, the XAI methods can
be further classified into [23]:

e Model-agnostic vs model-specific: Model-agnostic XAl
schemes are independent of the internal architecture
of the black-box model including the weights and
the hidden layers. Whereas, model-specific schemes
depend on a specific model like FNN or CNN and
can not be generalized to any other model. Therefore,
model-agnostic schemes are characterized by their high
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flexibility and can be used despite the type of the
considered model.

Local vs global: Local XAI schemes are those that
generate explanations for a group of samples, thus,
they are highly dependent on the utilized dataset. In
contrast, global XAl schemes generate explanations that
are related more to the model behavior.

Pre-model, in-model, and post-model strategies: Know-
ing that the XAI schemes can be applied throughout
the entire development pipeline. Hence, interpretability
can be acquired in three main phases. Pre-modeling
explainability is used to define the useful features of the
dataset for a better representation. Hence, pre-modeling
aims to perform exploratory data analysis, explainable
feature engineering, and dataset description. In con-
trast, in-model explainability is to develop inherently
explainable models instead of generating black box
models. Finally, the post-model explainability method
extracts explanations that are dependent on the model
predictions.

C. XAl FOR WIRELESS COMMUNICATIONS

Wireless communications are still in the early stages of using
XAIL The majority of related works in the literature are
surveys and reviews about the guidelines and importance of
using XAl in wireless communications. In [24] the authors
provided a review of the core concepts of XAl including
definitions and possible performance vs. explainability trade-
offs. They mainly focused on reviewing the recent DL-based
schemes for the PHY and MAC layers and specified the ex-
plainability level of the studied schemes which is in general
low. In [25] the authors proposed a novel XAI knowledge-
powered framework for network automation that effectively
adapts to the dynamic changes of complex communication
systems as well as provides a human-understandable ex-
planation. The proposed XAI scheme aims to explain the
decision-making for automated path selection within the
network.
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The deployment of XAl in the open radio access network
(O-RAN) was recently surveyed in [26], where the authors
performed a comprehensive survey on the use of XAl
to design a trustworthy and explainable O-RAN architec-
ture. Moreover, an explainable machine learning operations
(MLOps) for streamlined automation-native 6G networks has
been proposed in [27], [28], where SHAP XAI scheme is
employed to assign the features importance [29]. We note
that SHAP XAI scheme has been also employed for short-
term resource reservation in 5G networks [30] and energy-
efficient resource allocation, where the problem becomes
more challenging [31]-[33]. It is worth mentioning that,
the majority of DL-based resource allocation schemes are
based on deep reinforcement learning (DRL) where SHAP
assigns importance to the features used by the DRL agent at
each state. These features could be the number of active
antennas, utilized bandwidth, number of connected users,
and the average data rate.

In addition to network optimization and resource alloca-
tion, XAI has been employed also in internet-of-things (IoT)
networks. In [34] the authors presented a comprehensive
survey on XAl solutions for IoT systems including the state-
of-the-art past and ongoing research activities. In particular,
they focused on the XAI for IoT adaptive solutions using
several architectures based on 5G services, cloud services,
and big data management. In [35] the authors proposed a
novel model-agnostic XAl scheme denoted as transparency
relying upon statistical theory (TRUST) for numerical appli-
cations. They further tested the proposed TRUST scheme on
cybersecurity of the industrial IoT (IIoT). Simulation results
show that TRUST scheme outperforms the local interpretable
model-agnostic explanations (LIME) scheme [36] in terms
of performance, speed, and explainability.

D. MOTIVATION AND CONTRIBUTIONS

To the best of our knowledge, the methodology of deploy-
ing XAl schemes in PHY layer applications, specifically,
channel estimation is still unclear. Noting that the proposed
XAl-based schemes for network optimization [27], resource
allocation [30], and secured IoT [34] can not be adapted
to the PHY layer applications because in such applications
there are no clear discriminative features within the model
inputs. In this context, this paper aims to design a novel
XAI framework for FNN-based channel estimation, denoted
as XAI-CHEST. This framework is based on a perturbation-
based model-agnostic global pre-model methodology that
jointly performs the channel estimation task and provides
the corresponding interpretability. We precisely note that
the objective of the XAI-CHEST framework is to provide
the interpretability of any black-box model by highlighting
the relevant model inputs and analyzing their impact on the
overall performance of the considered black-box model. In
other words, the provided interpretations can show if the
decision making methodology of the black-box model is
reliable in case it is focusing on really the most relevant
model inputs in achieving the desired estimation task. The

XAI-CHEST concept has been partially proposed in [37],
where the key idea is to provide the interpretability of black
box models by inducing noise on the model input while
preserving accuracy. The model inputs are then classified into
relevant and irrelevant sets based on the induced noise. It is
worth mentioning that the proposed XAI-CHEST framework
works according to a low-complex one-shot mechanism,
where it could be easily adapted to other DL-based appli-
cations including real-time radio resource management. To
sum up, the contributions of this work can be summarized
as follows:

e The loss function employed to optimize the perfor-
mance of the proposed interpretability noise model is
theoretically detailed, where a custom induced noise
control term, Ly, is introduced.

e Deriving the analytical expression and the correspond-
ing simulations of the noise threshold optimization to
select the best threshold used in filtering the relevant
model inputs.

e Benchmarking the proposed XAI-CHEST framework
with LIME and SHAP schemes, where we demonstrate
its superiority and efficiency in terms of mechanism,
interpretability resolution, performance, and computa-
tional complexity.

e Showing that using only relevant inputs instead of the
full set improves the performance of the considered DL-
based channel estimators.

e Optimizing the architecture of the considered DL-based
channel estimator where minimizing the relevant model
inputs resulted in a reduction of the model’s hidden
layers while preserving performance levels.

The remainder of this paper is organized as follows:
Section II presents the system model in addition to the DL-
based channel estimators to be interpreted. Section III shows
the detailed overview of the classical XAl features selection
schemes such as LIME and SHAP, in addition to highlight-
ing their limitations and how the proposed XAI-CHEST
framework tackle them. Section IV illustrates the designed
XAI-CHEST framework as well as the noise threshold fine-
tuning optimization problem. In Section V, the performance
of the designed XAI-CHEST framework in terms of bit error
rate (BER) is analyzed considering several criteria. Finally,
Section VI concludes the manuscript.

Notations: Throughout the paper, vectors are defined
with lowercase bold symbols s, where s and 5 denote
the frequency-domain and the time-domain OFDM symbol,
respectively. The (i, k) element of s is represented by s;[k],
where ¢ and & stand for the OFDM symbol and the subcarrier
indices, respectively. Moreover, we note that the full OFDM
symbol s; € CE*! includes s; 4 € CKa*1 data symbols
and s; , € CK»>*1 pilots.
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Il. SYSTEM MODEL

This section illustrates the considered generic system model
in addition to the considered DL-based channel estimation
scheme to be interpreted.

A. OFDM TRANSCEIVER

In this work, we consider single-input and single-output
(SISO) orthogonal frequency division multiplexing (OFDM)-
based transmission with non-linear radio frequency (RF)
represented by the high power amplifier (HPA) at the OFDM
transmitter. As shown in Figure 2, the first operation on
the transmitter side is the binary bits generation. Generated
bits are scrambled in order to randomize the bits pattern,
which may contain long streams of 1s or 0s. The scrambled
bits are then passed to the encoder, which introduces some
redundancy into the bits stream. This redundancy is used
for error correction that allows the receiver to combat the
effects of the channel, hence reliable communications can
be achieved.

Bits interleaving is used to cope with the channel noise
such as burst errors or fading. The interleaver rearranges
input bits such that consecutive bits are split among different
blocks. This can be done using a permutation process that
ensures that adjacent bits are modulated onto non-adjacent
subcarriers and thus allows better error correction at the
receiver. After that, the interleaved bits are mapped according
to the employed modulation technique, i.e., BPSK, QPSK,
16QAM, 64QAM, etc. Bits mapping operation is followed by
constructing the OFDM symbols to be transmitted. The data
symbols and pilots are mapped to the active subcarriers and
passed to the IFFT block to generate the time-domain OFDM
symbols and followed by inserting the cyclic prefix (CP).
Finally, the CP-OFDM symbol is subjected to the impacts
of HPA non-linear distortion as well as the channel and the
additive white Gaussian noise (AWGN) noise.

At the receiver side, the CP is removed and the FFT
applied to the received symbol. Channel estimation and
equalization are performed where the equalized data are de-
mapped to obtain the encoded bits. Afterwards, deinterleav-
ing, decoding, and descrambling are performed to obtain the
detected bits. We note that the employed system model is
based on the IEEE 802.11p standard [38].

B. SIGNAL MODEL
Consider a frame consisting of / OFDM symbols. The i-th

transmitted frequency-domain OFDM symbol s; € CK*1,
can be expressed as:
Si}d[k‘], ke /Cd
silk] = ¢ siplkl, kel @)
0, ke,

where 0 < k < K — 1 denotes the subcarrier index. We note
that K, useful subcarriers are used where Ko, = K, + K.
sip € CE»*1 and s; 4 € CKax1 represent the allocated
pilot symbols and the modulated data symbols at a set of
subcarriers denoted K, and Ky, respectively. K, = K — Ko,
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denotes the null guard band subcarriers. K, samples are
added to the time-domain OFDM symbol resulting in x; €
CH+Kax1 which is then passed to the HPA. According to
the Bussgang theorem [39], the HPA output u € CK+Eex1
can be expressed as follows:

w; = px; + z{, 2
where p and z| refer to the complex gain and the non-

linear distortion (NLD), respectively. After that p is com-

pensated at the transmitter and u) can be rewritten as:

/
wi= 2=+ oz, 3)

where z; = Zi denotes the remaining NLD of the HPA.

After passing via the doubly-dispersive channel and re-
moving the CP, the received time-domain OFDM symbol
y;[n] can be expressed as follows:

ol = 3 Rull sl — 1)+l
R 4)
! U P27 4 B[n
= 7% kz_o hilk, n]@;[k]e”* ™K + v;[n).

h;[l,n] denotes the delay-time response of the discrete
linear time-variant (LTV) channel of L taps at the ¢-th OFDM
symbol, whereas h;[k,n] lLol i[ln]e 27K refers
to the frequency-time response. Moreover, v; signifies the
AWGN of variance 2.

The i-th received frequency-domain OFDM symbol is
derived from (4) via discrete Fourier transform (DFT), and

thus

K—

1 1

K—1
_s9._n(k—aq)
@ilg] Y hilg,nle TR 4

n=0

oilk]. (5)

q=0

It is noteworthy that index k is used in (4) to express
the channel delay-time response in terms of the channel
frequency-time response. While the change of index into ¢
in (5) is used to express the i-th received symbol in frequency
domain. This, in turn, better illustrates the DFT transform.
Moreover, h;[q,n] refers to time-variant at the scale of the
OFDM symbol duration (the index z) and within the symbol
itself (the index n).

The time selectivity of the channel depends on the mobil-
ity. In very low mobility, where fq =~ 0, h;[q,n] = h[q] is
constant during the whole frame. For moderate to high mo-
bility, the channel variation within the duration of one OFDM
symbol is negligible, and therefore, h;[q, n] = h;[q]. At very
high mobility, the channel becomes variant within a single
OFDM symbol. In this instance, h;[q,n] = h;[q] + €i[q,n],
where
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(6)
By replacing this in (5), the received frequency-domain
OFDM symbol y; € CKo*1 is expressed as follows:

yilk] = hi[k|u;[k] + ei[k] + vi[k], (M
where
R R linear RF
w;lk] = { si[k] + z;[k], non-linear RF ®)

h; € CEox1 p, € CKax1 and e; € CEox1 refer to the
frequency-time response of the doubly-selective channel, the
AWGN at the i-th OFDM, and the Doppler-induced inter-
carrier interference, respectively. e; can be expressed as:

K—-1K-— ) (o)

ZZ P sl ()
=0 n=0

qsﬁk

The Doppler interference destroys the orthogonality of
the subcarriers within the received OFDM symbol, leading
to a significant degradation in the overall system perfor-
mance [40], [41]. We note that the objective is to obtain

the channel frequency response estimate denoted by h; €
(CKonxl.

C. DL-BASED CHANNEL ESTIMATION

Conventional channel estimation depends highly on environ-
ment conditions. In frequency-selective slow fading chan-
nels, the preamble-based channel estimation is sufficient,
since the communication system encounters only muti-path
fading and the channel is not changing over time. However,
in double selective channels, the impact of Doppler inter-
ference is added to the communication system. Thus, the
estimated channel at the beginning of the frame, i.e., the

preambles, becomes outdated and channel tracking becomes
more challenging, especially, in high mobility scenarios.
To cope with this challenge, pilot subcarriers are allocated
within a transmitted OFDM symbol to allow better channel
tracking over time, where several conventional channel esti-
mation and tracking schemes are proposed in the literature.
In order to further improve the conventional channel esti-
mation accuracy, DL models are applied as post-processing
on top of conventional channel estimators. In this work, we
considered the STA-FNN channel estimator [8] as a case
study, where we used the optimized XAI-CHEST framework
to provide the corresponding reasonable interpretations.
Conventional STA channel estimation scheme [14] is
based on the DPA estimation where the demapped data
subcarriers of the previously received OFDM symbol are
used to estimate the channel for the current OFDM symbol
such that:
@(AL
hopa,_,
where D(.) refers to the demapping operation to the nearest
constellation point according to the employed modulation
order. ﬁLS stands for the LS estimated channel at the
received preambles. Thereafter, the DPA channel estimates
are updated in the following manner:
Yi
4 (11)
After that, frequency-domain averaging is applied where
the DPA estimated channel at each subcarrier is updated as
follows:

d; ), iLDPAg = hys,

(10)

hppa, =

A=p
. 1
= hppa. |k + A = .
] wa ppa, [k + A], wa 28+ 1
A=—8
Finally, time-domain averaging is employed to reduce the
AWGN noise impact such that:

he, [k

12)

N 1. - 1.
hsta, = (1 — —)hgra, , + —hep,. (13)
a «

We note that conventional STA channel estimation per-
forms well in the low signal-to-noise ratio (SNR) region.
However, it suffers from a considerable error floor in high
SNR regions due to the large DPA demapping error result-
ing from (10) and the fixed frequency and time averaging
coefficients a = S 2 in (12) and (13), respectively.
Therefore, the conventional STA channel estimation scheme
is not practical in real-case scenarios due to the high doubly-
selective channel variations. As a workaround, a 3 hidden
layer FNN model denoted as utility model U consisting of
15 neurons per layer is utilized as a nonlinear post-processing
unit following STA. As shown in [8], STA-FNN can better
capture the frequency correlations of the channel samples, in
addition to correcting the conventional STA estimation error.

We note that through the following sections, the notations
are expressed in the context of the DL-based channel esti-
mation as follows:
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e Let U be the black-box model denoted as the utility
model with parameters 6y. In general, the U model
refers to the channel estimation model that consists of
I’ inputs, L' hidden layers, and J neurons per layer.
Hence, the computational complexity! of the U model
can be expressed as follows:

Cu=0(I'L'J)
=O(I').

e The input and output of the U model are denoted as
hlp, € R?Kax1 and ﬁgi) € R?Kox1_ respectively. hj,
corresponds to the conventional estimated channel that
is applied prior to the U model. We note that the size of
h &,i is 2K, since the conventional estimated channel is
converted from complex to real domain before further
processing by stacking the real and imaginary values
vertically in one vector.

o & refers to the employed conventional channel estima-
tion scheme.

(14)

The objective is to provide a reasonable interpretation of
the behavior of the U model by selecting the most relevant
inputs contributing to its prediction.

lll. Literature Review

Several methods have been explored in the field of XAI to
interpret the machine learning models, such as LIME [36]
and SHAP [29]. Both methods aim to assign a relevance
score for the input features and interpret how each feature
affects the final decision. LIME offers local explanations
for individual predictions, allowing users to understand the
specific outcomes by applying a pertubation-based itera-
tive mechanism. On the other hand, SHAP employes a
permutation-based iterative approach to provide a global per-
spective by quantifying the feature contributions across the
whole dataset. In this section, we explain both XAI methods
thoroughly, illustrating their mathematical derivations as well
as their limitations. Finally, we show the main criteria that
make our proposed XAI-CHEST framework better than the
LIME and SHAP XAI methods.

A. Classical XAl methods

LIME aims to replace the original black-box model by a
simple interpretable model that approximates the behavior
of the original to explain its predictions. Given the instance
vector izﬁb to be explained, the first step is to generate new
instances by perturbing il:p,- several times. These perturbed
instances are generated from the same distribution of fzﬁbi
and then fed to the utility model U to get the corresponding
predictions. Each perturbed instance is assigned a weight
relevant to its proximity to the original instance izﬁb The
new weighted dataset is used to train an interpretable model

IWe note that we are using the simplified O(.). Hence, the complexity
of the U model can be simplified to O(I").

VOLUME

that best describes the behavior of the utility model U. Thus,
the learned interpretable model gives coefficients indicating
the importance of each feature in h’

Given the interpretable models set g the objective is to
find the best interpretable model g, € G that approximates
the behavior of the utility model U. Dypvg denotes the
number of generated perturbed samples with a proximity
function 7g, that describes the difference between the sam-
ple to be interpreted ﬁﬁbi and the generated perturbated
samples. Hence, the LIME XAI method aims to minimize
the following loss function:

Limve(hg,) = argmin L(U, ga,, 7a,) + C(ga, ),
go, € G

where L£(U, gs,,7o,) is a loss function that gets smaller
as gp, becomes better approximation of U. C(ge,) denotes
the complexity measure of the interpretable model gg,.
We note that the complexity is opposed to interpretability.
Typically, go, would belong to the family of linear functions
with low complexity. However, it is not always possible to
replace the utility U model by a simple interpretable low
complex gg, model since non-linear functions could also be
required according to the studied problem. In this last case,
the complexity C(ge,) becomes higher, and interpretability
decreases. We note that in this work, the default weighted
linear regression model is used as a surrogate model gg,.
A detailed comprehensive review of the LIME XAI method
can be found in [42].

We note that the overall computational complexity of
the LIME methods arises from generating and predicting
the output of the perturbed samples. This involves calling
the utility model U Dypyg times. Moreover, training the
local interpretable model increases the complexity cost that
depends on the chosen interpretable model and the number
of features. In this context, the computational complexity of
LIME methods can be expressed as follows:

5)

Cumvie = O(Duve(Cu + 4K§n))
= O(DLveK3,).

In addition to LIME, SHAP is also used to explain the
prediction of the ﬁ&w based on a game-theoretic approach.
SHAP estimates the shapley values [43] that fairly distribute
the prediction among the input features by considering all
possible coalitions of the features acting as players. All
possible coalitions of input features are defined, where for
each feature, the marginal contribution to the prediction is
computed after being added to every possible coalition of
other input features. Thus, the shapley value of a feature is
calculated by averaging its marginal contribution among all
possible coalitions.

Mathematically speaking, let M be the set containing all
the players, i.e, in our case M = ﬁ{bi with |[M| = 2K, total
players. S C M is a subset of participants of full coalition
M. 7 € M denotes a specific player with the coalition.

(16)
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Finally, val is a value function that maps subsets of players

S to a real number, i.e, val(S) represents the revenue of

the coalition S. Noting that when a player j joins a set of

players S, the marginal contribution of player j to S denoted
(s .

as (" can be expressed as follows:

OV = val(S U {j}) — val(9)). (17)

In other words, the marginal contribution measures the
value that player 5 added when he joined the group of players
S. The Shapley value ¢ of player j given the set M and the
value function val(.) can be defined by:

BiMoval) = = SIS —1s| - DHE) ay)

C SCM\{5}
SHAP XAI method seeks an additive explanation model
that is the sum of contributions of individual features, and it
is defined as:

|M]

g(s') = do+ > ¢;s), (19)
j=1

where g(s') =~ U(ﬁ&)i) is the explanation model, s’ =
(s, STMI)T € {0,1}M is the coalition vector, ¢ is the
expected output of the model, and ¢; is the Shapely value
of the feature j defined in (18).

It is worth mentioning that the manipulation of the ex-
act shapley values is computationally expensive since the
iteration over the full possible coalitions is required. Hence,
the computational complexity of the exact SHAP method
is O(2Kx), Therefore, exact shapley value computation is
feasible only for very small numbers of input features and not
for high-dimensional ones. In this context, several SHAP ap-
proximation methods have been developed to overcome the
high complexity issue of the exact SHAP method. Among
different approximation methods, we focus on DeepSHAP
method, which efficiently approximates shapley values for
deep learning models. Instead of iterating over all the
possible coalitions, DeepSHAP uses some samples called
background samples, where the DeepLIFT mechanism is
employed to produce results that adhere to the desirable
characteristics of shapley values.

The approximation resolution of DeepSHAP depends
mainly on the number of background samples Dgyap used
in the approximation. Moreover, these background samples
should belong to the distribution of the overall datasets, i.e,
chosen from the training dataset. Further details can be found
in [44], [45]. We note that employing Dsyap background
samples instead of 22Ko possible coalitions reduces the
computational complexity of Deep SHAP to:

Coeepstapr = O(4Kon DsuarCr)

20
= O(DsuapKon). 0

where Cpogel denotes the computational complexity of a
single forward and backward propagation through the con-
sidered black-box model.

Finally, we note that LIME and DeepSHAP methods
are employed to provide corresponding relevance scores
for the elements of fzﬁb Based on the provided relevance
scores, their performance against the proposed XAI-CHEST
framework is evaluated as discussed in Section V-D.

B. Towards XAI-CHEST

Both LIME and DeepSHAP aim to explain the predictions
of DL models, thus, enhancing their interpretability. LIME
employs local approximation by training a simpler inter-
pretable model that can approximate the functionality of
the U model. Therefore, giving insights into how features
influence the prediction locally. However, the perturbation
methodology employed by LIME is not efficient, since it
is based on generating N synthetic perturbated samples
which may not be suitable for correlated data in the instance
to be explained, i.e, in our case the correlation between
the estimated channel among different subcarriers as shown
in (12). Moreover, LIME simplifies the original U model,
which may not always mimic its original performance. In
addition, this simplification is mainly dependent on the
choice of interpretable model which can introduce bias.
These factors leads to a considerable overall computational
complexity of LIME which is O(DymeKZ2).

On the other hand, DeepSHAP provides both local and
global interpretations by Leveraging game theory concepts.
Shapley values corresponds to the average marginal con-
tribution of a feature value after considering all possible
combinations of input features coalitions. Even though, the
manipulation of the exact Shapley values is computational
expensive, the approximation methods like the DeepSHAP
still suffers from several issues. DeepSHAP approximation
requires the backpropagation of contributions via the in-
ternal model architecture and is mainly dependent on the
background dataset samples Dsyap that are used to compute
the approximated Shapely values iteratively, hence, adding
another factor of complexity. Moreover, the choice of the
background dataset is essential to currently manage the pres-
ence/absence of specific input fractures. Therefore, it con-
siders partially the correlation between input features. These
issues makes the computational complexity of DeepSHAP
still substantial which is equivalent to O(DsgapKon)-

It is clearly shown that LIME and DeepSHAP XAI
schemes are not practical for high-dimensional correlated
data, either because of their overall computational complex-
ity, or due to their iterative mechanism that depends on
considering the partial correlation between input features.
All these factors limits the performance of LIME and SHAP
in practical real-time scenarios. In this context, in this work
we propose the perturbation-based XAI-CHEST XAI frame-
work that tackles the limitations of LIME and DeepSHAP
XAI schemes, thus, providing a fast one-shot low-complex
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Figure 3. Block diagram of the XAI-CHEST framework. The first step is to train the U model and freeze its parameters 6. After that, the N model is
trained where the objective is to boost the growth of b}, . while preserving the same performance of the pre-trained U model (24). Finally, the subcarriers

are filtered based on b,

. where higher noise weight S|gn|f|es that the corresponding subcarrier is irrelevant (red colors). In contrast, low noise weights

mean that the subcarriers are relevant (blue colors). We recall that in this work we are considering the STA-FNN channel estimation scheme, hence,

P = STA.

solution for classifying the U model correlated inputs into
relevant and irrelevant. By employing the proposed XAI-
CHEST framework, better performance-complexity trade-
offs can be designed in addition to interpreting the relevance
of the U model inputs. Therefore, produce a reasonable
interpretation of the decision-making methodology of the U
model by analyzing on which inputs it is focusing to predict
the final output.

IV. XAI-CHEST FRAMEWORK DESIGN

Providing external interpretability of the black-box model
used for channel estimation could be achieved through
classifying the model’s input into relevant and irrelevant
by employing a perturbation-based methodology. The main
intuition is that if a subcarrier is relevant for the decision-
making of a trained black box model, then adding noise
with high weight to this subcarrier would negatively impact
the accuracy of the model. Whereas, if the subcarrier is not
contributing to the decision-making of the model, then what-
ever the induced noise is, the channel estimation accuracy
will be preserved. Therefore, it is expected that considering
only the relevant subcarriers as model inputs would improve
channel estimation performance in comparison to the case
where the full subcarriers are given to the model. Moreover,
by reducing the model input size, the employed architecture
could be further optimized resulting in significantly decreas-
ing the overall computational complexity. Hence, by using
the XAI-CHEST framework, we can obtain a reasonable
interpretation of the model decision-making methodology,
improve the channel estimation performance as well as
reduce the required computational complexity.

VOLUME ,

A. METHODOLOGY
The objective is to provide a reasonable interpretation of the
behavior of the U model. Besides the U model, we define the
interpretability noise model IV, with parameters 6y, whose
purpose is to compute the weight of the noise induced to
each subcarrier within the U input vector. The key idea is
that the induced noise weights of the N model should not
impact the accuracy of the U model. This could be achieved
by customizing the loss function of the N model that will
adjust the induced noise while simultaneously maximizing
the performance of the U model. We note that the U model
is trained before the XAI processing of the N model, i.e.,
the weights of the U model are frozen. Moreover, the U and
N models have the same FNN architecture.

Let ﬁ&w be the input of the interpretability N model. The
role of the N' model is to find a mask by, € R*¥*! that
can be represented as follows:

by, = N(h}. . 0n), 1)

where by = (by,[1], b, [2]; -, g, [2Ka]) € [0, 1)Ko de-
termines the weight (standard deviation) of the noise applied
to each element in h/, . We note that the scaling of bl is
achieved using the 51gm01d activation function. After that
the generated noise weight mask b, . 1s first multiplied by
a random noise ¢ ~ A(0,1) sampled from the standard
normal distribution, the resultant is added to the conventional
estimated channel vector, such that:

hi, = h}, + b€ (22)

After that, ilg)l is fed as input to the U model, such that:
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hY) = Uk, 00). 23)
The customized loss function of the N model can be
expressed as follows:
Ly :ngin (Luv — ALx), (24)
N
Ly denotes the loss unction of the U model when il&/)i is
fed as an input. Hence, Ly can be expressed as:

1Nt

£ =
v Ntr

) (25)

> [ — i
i=1
where h; refers to the true channel and Ny, is the number of
training samples. Moreover, the induced noise is controlled
by Lx that can be written as:

(26)

We would like to mention that the objective of Ly is
to keep the loss of the U model as low as possible. In
other words, minimizing the added noise by the N model
while maximizing the generated b, . It is worth mentioning
that the interpretability measure aims to find a maximum
number of low-significant elements. Hence, the term —Lx
gives a negative value, which will get closer to zero when
more weights are close to one, meaning that our N model
finds more irrelevant elements and can better highlight the
significant features. We note that ) is a parameter that allows
to give more or less weight to the interpretability measure.
The problem is similar to a minimization on Ly with a
constraint on Ly (X being a Lagrange multiplier) or simply
a regularization term. We note that A\ is considered as a
hyperparameter that can be tuned using cross-validation in
order to achieve the optimal balance between Ly and Lx
during the training process.

Finally, in the testing phase, bg, is scaled back to by, €
R&nx1 " where the noise weight of the real and imaginary
parts for each subcarrier are averaged. The motivation behind
this averaging lies in the fact that it is noticed during the
training phase that the interpretability model produces almost
the same noise weight for the real and imaginary parts of
each subcarrier within h’ . The block diagram of the XAI-
CHEST framework and the N model training procedure are
illustrated in Figure 3 and algorithm 1, respectively. We note
that H} € R*KonxIr and H € R2Ko*Ir denote the training
dataset pairs of the conventional estimated channels and the
true ones, where Ij; is the size of the training dataset. To sum
up, the overall functionality of the proposed XAI-CHEST
framework can be summarized as follows:

1) Train the Utility Model (U): We train the main utility
model U on the original dataset. Hence, feeding it the
estimated channels as inputs and the true channels as
outputs.

Algorithm 1 N model training

Input: Conventional estimated channel: ﬂjp, true channel:
H, learning rate: ), trained U model with parameters 0
Output: Trained N model with parameters 6
while not converged do
for hy, € H}, , h; € H; do
by, « N (R, 0n)
€ < N(0,1)
h”L_ — h’ +bﬁple
hy) U(h&?iv@U)
Ly < MSE(h; —hY))
Lx « mean(log(b ))
EN — ﬁU )\EX

On < On + ngfjg
end for
end while

2) Train the Interpretability Model (N): Next, we train
the interpretability model N using the pre-trained
U model and the original dataset. In this step, the
objective is to maintain the performance of the U
model while introducing noise weights to its inputs,
as shown in Algorithm 1.

3) Interpret the U Model: Here we feed the original
testing dataset into the interpretability model N. This
step aims to generate the averaged noise weights of
the corresponding testing dataset.

4) Test the U Model with Relevant Inputs: Finally, we
test the U model using only the relevant inputs. These
inputs are filtered based on the averaged noise weights
from step 3 and a specific threshold. After that, the U
model is trained and tested on this modified dataset
containing only the selected relevant inputs.

B. NOISE WEIGHT THRESHOLD OPTIMIZATION

After accomplishing the N model training, the fine-tuning
of the noise weight threshold denoted by ~ is essential for
classifying the model inputs into relevant and irrelevant.
This could be formulated as an optimization problem, where
the objective is to select the best input combination that
minimizes the mean squared error (MSE) between the cor-
responding estimated channel by the U model and the true
channel.

Technically speaking, each element in bg, [k] denotes the
assigned noise weight by the N model to the estimated chan-
nel at the corresponding subcarrier in iszi [k]. Hence, b, [k]
can be seen as a subcarrier relevance score in contributing
to the desired channel estimation task. Therefore, all the
subcarriers are grouped according to the assigned ﬁ&w [k],
where lower values indicate high relevance and vice versa. In
this context, the optimal ~y signifies selecting the optimized
subcarriers set at a specified threshold, where training the
U model with the selected set provides the optimal BER
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Figure 4. Normalized restricted loss function g(¢). The numerous local
minima show the non-convexity nature of the FNN’s loss function.

performance. The relevant and irrelevant subcarriers set are
denoted as Rg, and IRg,, respectively, and defined as
follows:

U — Rq;i — Rq;.i + k,
v IRs, + IRs, + k,

by, [k] <~

by k] >y - @D

R and Z'R contain the indices of the relevant and irrelevant
subcarriers selected according to the corresponding noise
weight as shown in (27). We precisely note that the fine-
tuning optimization problem is subjected to improving or
preserving the BER in comparison to the case where the full
subcarriers are given to the U model.

Let Q be the generic input given to the U model and
., be the optimized model input according to the selected
v, where ¥., € {Rq,,ZRa,}. The considered fine-tuning
optimization problem can be mathematically expressed as:

Ny

D> (hi-U@Q=1,,

i=1

st. BER(Q =V.) < BER(Q =

1

Ly=—
v Nt’r‘

9U))2

min
Vy,0u (28)

hs,)

We note that the defined optimization problem in (28) is
not convex. The non-convexity can be shown by the line
restriction method illustrated in Lemma 1 [46]. We note
that the line restriction method is also referred as the 1D
slice visualization is a common technique used to illustrate
the non-convexity of the loss function of FNN models since

the full parameter space is too high-dimensional to visualize
directly.

Lemma 1. Restriction of a convex function to a line

A function f: R™ — R is convex, if and only if

Va € dom f and Yv € R™, the function g = f(x + tv) is
convex on domg = {t e R| z + tv € dom f}

VOLUME ,

Table 1. Parameters of the studied STA-FNN channel estimation scheme.

Parameter Values
STA-FNN (Hidden layers; Neurons per layer) | (3;15-15-15)
Activation function ReLU
Number of epochs 500
Training samples 800000
Testing samples 200000
Batch size 128
Optimizer ADAM
Loss function MSE
Learning rate 0.001
Training SNR 40 dB

Lemma 1 is based on the line restriction method to prove
the convexity of the considered function. In this context,
the initial loss function L is reduced to the restricted
loss function denoted as g(t) = Ly(0y + tv), where v
and ¢ denote the randomly selected slice and the step size,
respectively. Figure 4 shows the ¢(¢) where we can see
numerous local minima signifying visually the non-convexity
nature of the FNN’s loss function as well as the optimization
function expressed in (28). We note that in the next section,
we provided a heuristic solution of (28), where the BER vs
noise weight threshold is analyzed and the best threshold is
selected according to the lowest recorded BER among all
the considered thresholds.

V. SIMULATION RESULTS

This section illustrates the performance evaluation of the pro-
posed XAI-CHEST framework, where BER performance of
STA-FNN channel estimation scheme is analyzed taking into
consideration full, relevant, and irrelevant subcarriers. First
of all, we start with the noise weight threshold fine-tuning,
where the simulation-based solution of (28) is provided.
After that, the performance evaluation is performed accord-
ing to several criteria including the (i) modulation order,
(i) frequency selectivity of the channel, (iii) training SNR,
and (iv) conventional channel estimation accuracy. Finally,
a detailed computational complexity analysis is discussed
where we show that further significant reduction in the over-
all computational complexity can be achieved by employing
only the relevant subcarriers identified by the proposed XAl-
CHEST framework. We note that the considered channel
models [47] are simulated using the comm.RayleighChannel
Matlab function that allows the realistic modeling of doubly-
dispersive channels. This function takes the required power-
delay profile (PDP) in addition to the Doppler sift in order to
simulate the effect of relative motion between the transmitter,
receiver, and scatterers. We note that the employed Doppler

11
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Table 2. Characteristics of the employed channel models following Jake’s Doppler spectrum.

Channel model Average path gains [dB]

Path delays [ns]

VTV-EX

[0, 0, 0, -6.3, -6.3, -25.1, -25.1, -25.1, -22.7, -2.27, -22.7]

[0, 1, 2, 100, 101, 200, 201, 202, 300, 301, 302]

VTV-SDWW

[0, 0, -11.2, -11.2, -19, -21.9, -25.3, -25.3, -24.4,-28, -26.1, -26.1]

[0, 1, 100, 101, 200, 300, 400, 401, 500, 600, 700, 701]
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Figure 5. Fine-tuning of the noise threshold ~ considering the HFS channel model and QPSK modulation. (a) Noise weight distribution for all
subcarriers. (b) BER results considering all possible relevant and irrelevant subcarriers combinations. (c) BER vs. noise thresholds considering SNR =

40 dB.

spectrum follows the Jake’s model. In this context, the
generated perfect channels for each PDP are used in the
training of the U and N models. The employed channel
models are shown in Table 2: (i) Low-frequency selec-
tivity (LFS), where VTV Expressway (VTV-EX) scenario
is employed. (if) High-frequency selectivity (HFS), where
VTV Expressway Same Direction with Wall (VIV-SDWW)
scenario is considered. In both scenarios, Doppler frequency
fa = 1000 Hz is considered, i.e, the considered channels
are doubly-dispersive. However, in this work, we focus on
analyzing the impact of frequency selectivity since the FNN
models capture the frequency correlation among subcarriers
and not the channel tracking over time compared to the RNN
models. More precisely, we note that the channel tracking is
performed by the conventional channel estimation scheme
as shown in (13), where the employed FNN model captures
the frequency correlations in addition to denoising the con-
ventional estimated channel. Both the U and N models are
trained using a 100,000 OFDM symbols dataset, splitted
into 80% training, and 20% testing. ADAM optimizer is
used with a learning rate I = 0.001 with batch size equals
128 for 500 epoch. Simulation parameters are based on the
IEEE 802.11p standard [5], where the comb pilot allocation
is used so that K, = 4, Kg = 48, K,, = 12, and I = 50.
We note that the allocation of the pilot, data, and guard
band subcarriers is detailed in [5]. Table 1 summarizes
the simulation parameters considered in this work. Finally,
we note that the STA channel estimation is considered as
an initial estimation prior to the FNN processing. Hence,
® = STA, unless stated otherwise.

A. NOISE WEIGHT THRESHOLD ANALYSIS

Selecting the optimal noise weight threshold v is essential
in order to optimize the BER performance of the studied
DL-based channel estimator, as shown in (28). To this
end we simulated the BER considering all possible values,
ie, v = [0.1,0.2,0.3,...,0.8]. In each case, we trained
the U model considering both the relevant and irrelevant
subcarriers sets. In this section both the U and N models are
trained using the HFS channel model with QPSK modulation
and 40 dB training SNR. We note that we train the models
on SNR = 40 dB since the models can learn the channel
better when the training is performed at a high SNR value
because the impact of the channel is higher than the impact
of the AWGN noise in this SNR range [48]. Owing to the
robust generalization properties of DL, trained networks can
still estimate the channel even if the AWGN noise increases,
i.e., at low SNR values.

Figure 5(a) shows the distribution of bgy, . We notice that
the majority of subscribers are distributed more towards zero.
This signifies that the model is not sure if the subcarriers
can be neglected or not. It is worth mentioning that the pilot
subcarriers are assigned the lowest noise weight, i.e., 0.1
which reveals that the U model is not able to neglect the
estimated channels at the pilots, and considering them is
crucial for high estimation accuracy. This is consistent with
the channel estimation rules, where the channel estimates at
the pilots are very close to the ideal channel estimation.

As shown in Figure 5(b), we can notice that consid-
ering v = 0.4 gives the best BER performance among
other thresholds. Therefore, the STA-FNN model needs only
|Rsta;| = 28 subcarriers out of the full set, i.e, |[Rsta,| = 52
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in order to provide the best possible performance in the
considered HFS channel model. On the contrary, all the ir-
relevant subcarrier combinations are worse than the full case
in terms of BER performance. In other words, considering
|ZRsta;| = 48 which corresponds to excluding only the
four pilot subcarriers is not enough to preserve the BER
performance of the full case.

Figure 5(c) shows the BER in terms of 7 considering
SNR = 40 dB. Again, considering more subcarriers in
Rsta, is beneficial until reaching v = 0.4, where the BER
performance degrades. This signifies that in complicated
scenarios as the case in employing the HFS channel model,
the proposed perturbation-based XAI scheme can smartly
filter out the relevant model inputs which maximize the its
performance.
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B. IMPACT OF MODULATION ORDER

In this section, we further investigate the impact of the
employed modulation order on the noise weight distribution
considering also the HFS channel model. Figure 6 shows
the BER performance of employing the HFS channel model
using QPSK, 16QAM, and 64QAM, respectively. In general,
the BER performance degrades as the modulation order
increases. This degradation is mainly due to the impact
of the dominant multi-path fading in addition to the DPA
remapping error. Moreover, in this scenario, employing only
the four pilot subcarriers performs almost similarly to the
full case. To improve further the BER performance, more
relevant subcarriers are needed. Therefore, when the envi-
ronment becomes more challenging, the channel variation
increases among the subcarriers, thus, the noise distribution
is shifted towards zero signifying the need for more relevant
subcarriers.
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However, we can notice that for higher the modulation
order, the number of neglected subcarriers increases. This
is because the conventional STA channel estimates at these
subcarriers are so noisy, so the STA-FNN model neglects
them. It is worth mentioning that, the STA-FNN model treats
the conventional STA estimated channels separately and does
not consider the time correlation between successive OFDM
symbols due to the architectural design of the FNN network.
Hence, the channel tracking over time is applied within the
conventional STA scheme, where the FNN model is used to
capture the frequency correlation of the channel samples as
well as coping with the conventional STA estimation error.
In this context, the STA-FNN model neglects subcarriers
due to two main reasons: (i) LFS: The channel variation
among the subcarriers is slow, so few subcarriers are required
to accurately estimate the channel, as we will discuss in
the next Section. (i) HFS: Here the channel variation is
significant among the subcarriers, thus, the U model should

consider more relevant subcarriers to guarantee good channel
estimation accuracy. However, this is subject to the condition
where the conventional estimated channel at the considered
subcarriers is useful and not so noisy. Therefore, in the HFS
channel model, more relevant subcarriers are needed and this
is shown in generally shifting the noise weight distribution
towards zero, as shown in Figure 7(a). However, for higher
modulation orders, mainly 64QAM, the neglected subcarriers
are huge due to the bad channel estimation quality at these
subcarriers. Hence, avoiding them is useful to guarantee
BER performance. We note that the four pilot subcarriers
are assigned the lowest noise weight for all the modulation
orders. Therefore, the U model is able to classify the pilots
as the most relevant subcarriers regardless of the channel’s
high selectivity and the employed modulation order.

Figure 7(b) shows the BER in terms of y considering SNR
= 40 dB using the HFS channel model. We can notice that
(y = 0.5, |Rsta,| = 20), and (y = 0.5, |Rsma,| = 11) are
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the best options corresponding to the 16QAM, and 64QAM
modulation orders, respectively. Again we can notice that
the functionality of the interpretability model in classifying
the subcarriers into relevant and irrelevant is based on the
context, i.e., the employed modulation order in this case.

C. IMPACT OF CHANNEL FREQUENCY SELECTIVITY

In this section, we will investigate the performance evalu-
ation using the same methodology of Section B but con-
sidering the LFS channel model. Figure 8 shows the BER
results of employing QPSK, 16QAM, and 64QAM mod-
ulation orders, respectively. We can notice a significant
performance degradation as the modulation order increases
which is expected. The nice thing lies in employing the pilot
subcarriers only, where the corresponding BER performance
improves in comparison to the full case. In other words, the
BER performance improvement of employing the pilots in
comparison to the full case for 64QAM modulation is higher
than that for 16QAM and QPSK modulations, respectively.
This is because applying the frequency and time domain
averaging in the conventional STA channel estimation is no
longer reliable due to high demapping error resulting from
the DPA channel estimation (10) that is applied prior to the
STA estimation. Similarly to the discussion in Section A,
employing more relevant and irrelevant subcarriers leads to

VOLUME ,

a BER performance degradation in both cases where in the
relevant case, the BER performance is approaching the full
case, while in the irrelevant case, the performance is going
off the full case.

Figure 9(a) illustrates the noise weight distribution of
training the models using different modulation orders. We
can notice that distribution is shifted towards one, where the
majority of subcarriers are assigned noise weight equal to
one. This signifies that these subcarriers are not important
for the decision-making methodology of the U model. This
is because, in the LFS channel model, the channel presents
a smooth variation over the subcarriers, thus, the STA-
FNN model needs few subcarriers to accomplish the channel
estimation task. Moreover, as the modulation order increases,
the noise weight distribution becomes wider, where more
subcarriers are assigned more weights. For example, in the
64QM modulation order, it seems that the model needs
more subcarriers to preserve good performance, thus the
number of subcarriers that are assigned noise weight =
1 decreases. Moreover, in all cases, the model is able to
classify pilots as the most relevant subcarriers by assigning
them the lowest noise weight regardless of the employed
modulation order. The BER vs the noise weight for the
considered modulation orders is shown in Figure 9(b) where
we can notice that considering only the pilots in the LFS
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Table 3. Comparison between LIME, DeepSHAP, and XAI-CHEST.

Features Features Interpretability . .
Method Type Performance Complexity Mechanism
Correlation Dimensionality Resolution
LIME Perturbation-based | Partially Considered Low Erroneous Limited O(DLveK, gn ) Iterative
DeepSHAP Permutation-based | Partially Considered Low Erroneous Limited O(DspapKon) Iterative
XAI-CHEST Pertubation-based Fully Considered High Efficient Good O(Kon) One-shot

LIME [ DeepsHaP [XAI-CHEST

Features Correlation

Complexity Feature Bimenionality

Performance Interpretability Resolution

Figure 12. Radar chart comparing the robustness of LIME, DeepSHAP,
and the proposed XAI-CHEST framework.

channel model is enough, and there is no need to consider
any other subcarriers. On the contrary, all the irrelevant
subcarrier combinations are worse than the full case in terms
of BER performance. Hence, the absence of the four pilots
leads to performance degradation even if the other |¥| = 48
subcarriers are considered.

D. IMPACT OF INTERPRETABILITY RESOLUTION,
Following the same methodology of Sections A, B, and C,
we investigated the interpretability resolution of LIME and
DeepSHAP XAI schemes in comparison to the proposed
XAI-CHEST framework. We note that the interpretability
resolution signifies the ability of the XAl scheme in filtering
accurately the relevant subcarriers needed by the U model
to optimize the BER performance.

Figure 10 shows the noise weight distribution considering
the HFS channel model employing QPSK, 16QAM, and
64QAM modulation orders. Recall that the evaluation of the
benchmarked XAI schemes is based on two main criteria:
(i) The ability to assign the most relevant scores to the pilot
subcarriers. (i) The ability to select more relevant subcarriers
according to the considered scenario.We note that the XAI-
CHEST framework induces lower noise on the most relevant
subcarriers and vice versa. Hence, for the analysis to be co-
herent, the normalized complement of LIME and DeepSHAP

relevance scores are computed?, as shown in Figure 10.
Therefore, lower LIME and DeepSHAP scores correspond to
higher relevance of the subcarriers. For the pilot subcarriers,
we can notice that all the benchmarked methods are able to
classify the four pilot subcarriers as the most relevant ones.
Concerning the second criterion, in contrast to LIME and
DeepSHAP, the proposed XAI-CHEST framework outper-
forms LIME and DeepSHAP while considering the lowest
number of relevant subcarriers, as shown in Figure 11(a).
This signifies the superiority of the proposed XAI-CHEST
framework in selecting the correct relevant subcarriers that
contribute to optimizing the BER performance.

We note that Figure 11 shows the BER performance of the
benchmarked XAI schemes, where the best results for each
are considered, i.e., the threshold v maximizing the BER
performance is selected by using the corresponding Re,
subcarrier set as input to the U model. Hence, illustrating the
maximum potential of each method regardless of the selected
relevant subcarriers, since our aim here is to optimize the
BER performance as shown in (28). We can notice that
even though LIME and DeepShap schemes assume more
relevant subcarriers in comparison to the proposed XAI-
CHEST framework, they under-perform the BER perfor-
mance achieved by the proposed XAI-CHEST framework.
This signifies that LIME and DeepShap schemes are not
currently selecting the relevant subcarriers needed to max-
imize the BER performance. Instead, they are erroneously
mixing real relevant with irrelevant subcarriers, resulting in
the recorded under-performance. Moreover, the DeepShap
scheme assumes that the U model is not concerned about
the majority of the subcarriers by assigning high scores to
them. However, this is not correct when employing the HFS
channel model since the U model in such scenario considers
more relevant subcarriers to maximize the BER performance
as discussed in previous sections. It is worth mentioning
that erroneously selecting the relevant subcarriers by LIME
and DeepSHAP is related to their working methodology. For
example, LIME provides the relevance scores by trying to
replace the original U model by another interpretable model
trained on a generated perturbated dataset. However, this
dataset partially considers the correlation between the esti-
mated channel at different subcarriers according to the used
proximity measure by the LIME scheme. Therefore, leads to
untrusted interpretations. On the other hand, DeepShap par-

%In literature, higher relevance scores assigned by LIME and DeepSHAP

indicate more feature importance.
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tially considers the correlation between the estimated channel
at different subcarriers since it chooses modified random
samples from the training dataset; hence, the correlation is
partially maintained. It is worth mentioning that the proposed
XAI-CHEST framework considers the conventional esti-
mated channel directly without any modifications, therefore,
it considers the full correlation of the estimated channels
between different subcarriers, resulting in trusted interpreta-
tions. The overall computational complexity of the employed
XAI scheme is another essential factor to consider, especially
when dealing with real-time applications. LIME requires
O(DriveK?2,), whereas DeepShap requires O(DsnapKon)-
In contrast, the proposed XAI-CHEST framework requires
only one-shot forward pass of the employed interpretability
N model. Hence, it requires O(Ko,). As a result, the
required computational complexity by the proposed XAI-
CHEST framework is reduced to O(K,,) making it more
efficient in practical scenarios.

Table 3 shows the main characteristics of the benchmarked
XAI schemes, as a recap, LIME and DeepSHAP limited
performance is mainly due to their poor interpretability
resolution which is directly impacted by their working
methodology in partially considering the correlation between
several input features. In addition, their iterative mechanism
increases their computational complexity while limiting their
applicability to low-dimenional input space. In contrast,
these limitations are efficiently tackled by the proposed XAI-
CHEST framework, where the overall performance has been
improved by applying a low-complex on-shot mechanism
considering the full correlation between input features, which
efficiently improves the corresponding interpretability reso-
lution.

Figure 12 illustrates the key performance indicators (KPIs)
of the benchmarked XAI schemes in terms of three evalu-
ation scales, low, medium and high. LIME and DeepSHAP
share a low support for performance interpretability reso-
lution and feature dimensionality, where a medium support
is assigned to feature correlation. Whereas, a medium and
high complexity is assigned to DeepSHAP and LIME, re-
spectively. In contrast, the proposed XAI-CHEST framework
records the highest score for all KPIs except the complexity,
which is the lowest among the benchmarked XAI schemes.

E. IMPACT OF RF NON-LINEAR DISTORTION

In order to further analyze the impact of HPA-induced
nonlinearities, we employ QPSK modulation and IBO = 2
dB in the HFS channel models. Recall that this non-linearity
impact is equivalent to an additive, uncorrelated noise at
the receiver as shown in (2) and (3). Hence, the nonlinear
distortion becomes equivalent to a perfectly linear system
operating with a degraded SNR, where it uniformly impacts
all the subcarriers. As a result, the HPA-induced nonlinear-
ities lead to: (i) Pilot contamination: the channel estimates
derived from the distorted pilots are inherently noisy and
less accurate. (ii) Impaired channel estimation: The noisy

VOLUME ,

channel estimates prevent perfect channel equalization in the
subsequent data detection stage. (iii) Limited BER gain: The
combined effect of this SNR degradation impacting the data
detection and the impaired channel estimation significantly
limits the potential improvement in BER performance.

Figure 13 shows the noise weight distribution as well as
the BER analysis. It can be noticed that only 2 pilots are
assigned the lowest noise weight in comparison to 4 in the
linear case. This ensures that the HPA-induced nonlinearities
contribute to confusing the subcarrier filtering procedure.
However, a slight BER rate performance improvement can be
= 0.5. Therefore,
similar insights can be concluded as the linear case where
the proposed perturbation based XAI framework is able to
filter out the relevant subcarriers while preserving the BER
performance when using the full subscribers as an input to
the U model.

F. IMPACT OF TRAINING SNR

The sensitivity of the U model training, considering different
SNR values, is analyzed in this section. Figure 14(a) shows
the noise distribution when considering several training
SNRs employing the LFS channel model and QPSK modu-
lation order. Starting by training SNR = 0 — 5 dB, we can
see that the pilot subcarriers are assigned 0.2 noise weight
and the distribution is flattened along the entire range. This
reveals that even though the pilots have accurate channel
estimates, due to the dominant impact of AWGN noise, the
U model is not able to assign the lowest noise weight to the
pilot subcarriers. It is worth mentioning that when training
on SNR = 10 dB, the model starts to identify the pilot
subcarriers as the most relevant subcarriers by assigning to
two pilots the lowest noise weight, i.e., 0.1. Moreover, as the
training SNR increases, the noise distribution is shifted more
towards one, signifying that the model is better identifying
the relevant and irrelevant subcarriers. Figure 14(b) shows
the BER performance when the U model is trained on a
specific SNR and tested on the entire SNR range. We can
notice that training on higher SNR gives better performance
than training on the lower SNR due to the fact the AWGN
noise is negligible at high SNRs, thus the U model can
learn more efficiently the channel. In addition, the trained
model on high SNR can perform well when tested on lower
SNRs due to the generalization ability of FNN networks.
In conclusion, training on low SNR values leads to a
limited performance improvement over the conventional STA
channel estimation. Whereas training on high SNR allows
the smart feature selection resulting in optimizing the U
model input size, as well as significantly improving the BER
performance in comparison to the conventional STA channel
estimation.

G. IMPACT OF CONVENTIONAL CHANNEL ESTIMATION
To further analyze the impact of the conventional channel

estimation, which is implemented prior to the FNN pro-
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Assigned number of subcarriers for a given noise weight while varying the training SNR from 0 to 40 db. (b) BER performance across different training

SNRs.

Table 4. Computational complexity of the optimized FNN architecture employed in the STA-FNN channel estimation scheme.

FNN Architecture | Full (15-15-15) | Relevant (15-15-15)

Relevant (15-15) | Relevant (15) | Relevant (10) | Relevant (5)

FLOPS 752K 464 K

413 K 362K 248 K 1.34 K

cessing on the noise weight distribution, we considered in
this section the DPA-FNN [7] and TRFI-ENN [9] channel
estimation schemes in addition to STA-FNN. We note that
we consider the HFS channel model with QPSK modulation
in this analysis since it is more challenging. We recall that
the noise weight distribution highlights the behavior of the
studied black-box model. If the noise weight distribution is
shifted towards 1, then the black-box model employs fewer
subcarriers to accomplish the channel estimation task. On the
other hand, if the noise weight distribution is shifted towards
0, then more subcarriers are required by the considered
black-box model. Moreover, the noise weight distribution

is directly impacted by the accuracy of the conventional
channel estimation applied prior to the black-box model.
Hence, the best relevant subcarriers set is optimized accord-
ing to the conventional channel estimation. As we can see
from Figure 15(b), the conventional TRFI channel estimation
outperforms the STA channel estimation in the high SNR
region. This is due to the cubic interpolation employed on
top of the DPA channel estimation in the TRFI scheme.
Similar behavior can be seen with respect to the TRFI-FNN
and STA-FNN channel estimators, where the TRFI-FNN also
outperforms the STA-FNN in the high SNR region.
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(b) BER performance across different channel estimation schemes.

Motivated by the fact that the conventional TRFI is better
than the conventional STA channel estimation, it is expected
that the TRFI-FNN model may neglect more subcarriers than
the STA-FNN channel estimation scheme. This is shown
in Figure 14(a), where we can notice that even though we
consider the HFS channel model, the noise distribution of the
HFES channel model is still shifted towards one, signifying
that the TRFI-FNN requires less relevant subcarriers than the
STA-FNN channel estimation scheme in order to preserve
the BER performance as the full case, where |Rsta,
Similar behavior is recorded for the DPA-FNN channel
estimation scheme, where the distribution is also shifted
towards one in a close manner as the TRFI-FNN scheme.
This is because the conventional TRFI scheme slightly
outperforms the DPA channel estimation in the considered
scenario. However, the STA-FNN and TRFI-FNN channel
estimation schemes outperform the DPA-FNN due to the
averaging operations and cubic interpolation employed in the
conventional STA and TRFI schemes, respectively.

In this context, we can conclude that as the accuracy of
the conventional channel estimation increases, the number
of selected important subcarriers decreases, where STA-FNN
requires |Rsta,| = 28 relevant subcarriers, which are greater
than the relevant subcarriers required by the TRFI-FNN, i.e.,
|Rsta,| = 16. This means that the N model is able to induce
more noise to the TRFI-FNN input, whereas less noise is
induced to the STA-FNN input since it is already noisy.

H. COMPUTATIONAL COMPLEXITY REDUCTION

This section aims to investigate the possibility of optimizing
the U model architecture following selecting the most rele-
vant subcarriers so that the BER performance improvement
as well as reducing the computational complexity can be
achieved. In this context, we consider the LFS channel model

VOLUME

with the QPSK modulation order, where the pilot subcarriers
are fed to the U model with different architectures. The
objective is to reduce the computational complexity of the
classical STA-FNN model (15—15—15) while preserving the
BER performance of the best relevant case, i.e., employing
only the pilots in the LFS channel model.

Figure 16 shows the BER performance of different STA-
FNN architectures. We can notice that the FNN architecture
could be reduced up to one hidden layer with 15 neurons
while preserving the best possible performance. Moreover,
decreasing the number of neurons within this architecture
to 10 performs the same as the classical STA-FNN channel
estimation scheme, i.e., considering the full subcarriers as
inputs with the (15 — 15 — 15) FNN architecture. However,
employing shallow FNN architecture with 5 neurons is not
useful at all, where a significant performance degradation is
recorded in comparison to the classical STA-FNN architec-
ture.

The computational complexity of the employed FNNs is
computed in terms of the number of FLOPS? required by
each FNN architecture, as shown in Table 4. Employing the
same FNN architecture as the classical STA-FNN one but
using the pilot subcarriers as input reduces the computational
complexity by around 1.5x times in comparison to the
classical STA-FNN channel estimation scheme. However,
further complexity reduction can be reduced by employing
a shallow FNN with 15 neurons, where 2x times can be
achieved in comparison to the classical STA-FNN channel
estimation scheme. We would like to mention that in terms of
O(.), employing the pilots subcarriers reduce the complexity
from O(Ko,) to O(K),) which is almost equivalent. Because
of this we used the number of FLOPS in this section in

3We note that the number of FLOPS are calculated using the pytorch-
OpCounter package [49].
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Figure 16. BER performance considering the LFS channel model and
QPSK modulation across different FNN architectures. We considered only
the pilots as FNN inputs, where the FNN architecture varied from 3 hidden
layers, 15 neurons per layer, denoted here as (15-15-15) to 1 hidden layer
with 5 neurons, denoted here as (5).

order to further highlight the practical complexity reduc-
tion achieved by different configurations. We would like to
mention that similar BER performance can be guaranteed
as the classical STA-FNN channel estimator by feeding the
four pilots to a shallow FNN architecture with 10 neurons,
where 3x times less computational complexity is required.
Finally, we would like to mention that the proposed XAI-
CHEST framework resolves the main issues related to the
black box DL models by providing interpretability to the
model behavior, performance improvement, and computa-
tional complexity reduction by selecting the relevant model
inputs and optimizing the architecture of the employed FNN
model.

VI. CONCLUSION AND FUTURE PERSPECTIVES
Ensuring the transparency and trustworthiness of Al is
crucial for its efficient deployment in critical applications. In
this paper, we designed a novel XAI-CHEST framework that
provides the interpretability of the FNN models employed
in the channel estimation application. The XAI-CHEST
framework aims to classify the black-box model inputs into
relevant and irrelevant inputs by using a perturbation-based
methodology. We developed the theoretical foundations of
the XAI-CHEST framework by formalizing the related loss
functions. Extensive simulations have been conducted, where
the results reveal that a trustworthy, optimized, and low-
complexity channel estimation scheme can be designed by
selecting only the relevant inputs. In addition, the proposed
XAI-CHEST framework outperforms classical feature selec-
tion XAl schemes such as LIME and DeepSHAP mainly
in terms of interpretability resolution, performance, and
computational complexity. As a future perspective, three
main research directions could be established:
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o XAI-CHEST for RNN-based channel estimation: The
functionality of the proposed XAI-CHEST framework
is limited since it is not yet adapted to cope with
the time variation of the wireless channel. Hence, it
is essential to extend the XAI-CHEST framework to
deal with RNN-based channel estimation. Thanks to the
RNN memory that allows the prediction of the current
channel based on previously estimated channels, RNN
networks such as long short-term memory (LSTM) and
gated recurrent unit (GRU) are able to perform channel
estimation and tracking over time. Therefore, adapting
the XAI-CHEST to the RNN-based channel estimation
provides better noise allocation that varies over time
among the received OFDM symbols. Moreover, inves-
tigating the impact of the RNN memory size of the
efficiency of the noise allocation could provide further
performance-complexity trade-offs.

o XAI-CHEST for MIMO-OFDM: The combination
of multi-antenna and multi-carrier technologies is a
promising technique for ensuring the efficiency of high-
speed transmission in wireless communication systems.
However, providing performance-complexity trade-offs
is crucial for better designing the MIMO-OFDM re-
ceiver. In this context, extending the proposed XAI-
CHEST for MIMO-OFDM could be beneficial in adapt-
ing the size of the considered MIMO system based on
the channel correlation and the desired performance.

o Gradient-assisted XAI-CHEST framework: The pro-
posed XAI-CHEST framework is based on an ex-
ternal model-agnostic perturbation-based methodology.
Hence, the provided model’s interpretability is impacted
only by studying the influence of the model inputs on
its decision, where the internal architecture of the model
remains black-box. Therefore, the current XAI-CHEST
framework provides a smart input filtering strategy
where model-driven optimization is still unexplored. In
this context, investigating internal gradient-based XAI
schemes [50] and integrating them within the XAI-
CHEST framework will provide a double optimization
strategy that leads to filtering the relevant model inputs,
as well as fine-tuning the model architecture where
relevant layers and neurons are preserved.
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