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Abstract

Ensuring transparency and trust in artificial intelligence (AI) models is essential, particularly as they are increasingly applied in
safety-critical and high-stakes domains. Explainable Al (XAI) has emerged as a promising approach to address this challenge,
yet the rigorous evaluation of XAI methods remains crucial for optimizing the trade-offs between model complexity, predictive
performance, and interpretability. While extensive progress has been achieved in evaluating XAl techniques for classification tasks,
evaluation strategies tailored to semantic segmentation remain relatively underexplored. This work introduces a comprehensive and
systematic evaluation framework specifically designed for assessing XAl in semantic segmentation, explicitly accounting for both
spatial and contextual task complexities. The framework employs pixel-level evaluation strategies and carefully designed metrics
to provide fine-grained interpretability insights. Simulation results using recently adapted class activation mapping (CAM)-based
XAI schemes demonstrate the efficiency, robustness, and reliability of the proposed methodology. These findings contribute to
advancing transparent, trustworthy, and accountable semantic segmentation models.

1. INTRODUCTION

The increasing use of complex Artificial intelligence (AI) mod-
els has highlighted a major issue that lies in the interpretability
and transparency of these models. These powerful models often
function as black boxes, which means that we cannot see how
they make decisions [Fraternali et al., 2023]. This lack of trans-
parency makes it hard to trust them, limits our ability to find and
fix errors, and even raises ethical concerns [Kumar et al., 2024].
To address this issue, explainable artificial intelligence (XAI)
has emerged [Liu et al., 2024]. XAI aims to make Al models
more transparent by offering ways to explain their predictions
and behavior. This involves creating methods that show why
a model made a specific decision or how it reached a particular
outcome. The ultimate goal is to open the black box and provide
insights people can easily understand, leading to greater trust
and effective use of Al technologies. However, simply generat-
ing explanations is not enough. The effectiveness of XAl meth-
ods itself must be ensured and evaluated [Stassin et al., 2023].
This evaluation process is crucial for ensuring that explanations
are not only understandable but also accurate representations
of how the model works internally. Although various evalua-
tion strategies have been proposed for XAl methods in image
classification tasks [Lopes et al., 2022], the XAl evaluation for
semantic segmentation still lacks investigation [GipiSkis et al.,
2024]. Semantic segmentation involves dividing an image into
meaningful regions, which is important for many applications
such as object detection and scene understanding [Manakitsa et
al., 2024]. The explanations of the segmentation model should
consider the complex relationships between pixels and provide
information about spatial locations. Additionally, the value of
an explanation depends not only on its correctness, but also on
how easily it can be understood by the intended audience.

This paper aims to fill this gap by proposing a comprehensive
framework to evaluate XAl methods specifically designed for
semantic segmentation models. Our approach takes into ac-
count the unique constraints that segmentation tasks present,

such as spatial coherence, contextual interdependence between
regions, and the necessity for explanations that are consistent
with human visual perception. In this work, we propose a robust
evaluation framework that incorporates four alternative evalua-
tion strategies, each associated with relevant metrics to assess
the effectiveness of XAI methods in the context of semantic
segmentation. In summary, our contributions can be summa-
rized as follows:

e Propose a novel XAl evaluation framework for seman-
tic segmentation that includes comprehensive evaluation
strategies and metrics.

e Introduce a comprehensive and reliable XAI evaluation
strategy that uses the predicted masks and the ground-truth
labels. This better fits the constraints of semantic segmen-
tation applications.

e Evaluate the performance of the recently adapted XAl meth-
ods for semantic segmentation, ensuring a comprehensive,
reliable, and robust XAl evaluation.

2. XAI EVALUATION: OVERVIEW

Recently, researchers have developed various XAI methodolo-
gies and metrics to assess explanation methods, particularly for
image classification tasks [Fresz et al., 2024]. The research
has primarily focused on the use of objective metrics to eval-
uate the effectiveness of explanation methods. An example is
the evaluation of Gradient-weighted Class Activation Mapping
(Grad-CAM++) [Chattopadhay et al., 2018] using metrics such
as the average drop percentage, percentage increase in confi-
dence and win percentage. These metrics quantify how well
the generated explanation maps highlight the relevant regions in
the image that contribute to the model’s decision-making pro-
cess. Compared to its predecessor, Grad-CAM [Selvaraju et al.,
2017], Grad-CAM++ demonstrated a lower average drop per-
centage 36.84% and a higher percentage increase in confidence



17.05%, indicating its superior ability to generate accurate ex-
planations. In addition to objective metrics, subjective evalua-
tions that involve human judgments are used to assess the in-
terpretability and trustworthiness of explanation methods. For
example, Grad-CAM++ underwent a subjective evaluation in
which human subjects compared explanation maps from Grad-
CAM and Grad-CAM++, and it was found that Grad-CAM++
invoked greater trust. This approach helps determine whether
the explanations align with human intuition and understanding,
thereby assessing their practical usefulness in real-world sce-
narios. Similarly, Score-CAM [Wang et al., 2020] was assessed
using metrics such as average drop and average increase in con-
fidence, showing significant improvements over previous meth-
ods. These objective evaluations provide a quantitative measure
of an explanation method’s performance by analyzing how well
the explanation maps align with the model predictions.

Evaluations also extend to measuring the localization capabil-
ity of explanation methods. Grad-CAM and Score-CAM, for
example, were evaluated on the basis of their ability to accu-
rately locate objects within images. Grad-CAM’s evaluation in-
volved weakly-supervised localization and segmentation tasks,
as well as a pointing game evaluation to measure discrimina-
tiveness [Chattopadhay et al., 2018]. Score-CAM used energy-
based localization evaluations [Wang et al., 2020], demonstrat-
ing superior performance in accurately localizing target objects.
These evaluations are crucial in tasks where precise identifica-
tion of object locations is essential. In addition, qualitative eval-
uations are used through visual inspections and sanity checks to
validate the generated explanations. For example, Score-CAM
included a sanity check by comparing its outputs against those
from a randomly initialized network to ensure that the expla-
nations reflect the model’s learned parameters and not random
artifacts.

In summary, the evaluation of the XAI methods has focused
mainly on classification tasks using a combination of: (i) Objec-
tive metrics, (ii) Subjective evaluations involving human judg-
ments, (iii) Localization assessments, and (iv) Qualitative val-
idations through visual inspections and sanity checks. These
methodologies provide a comprehensive framework for assess-
ing the accuracy, interpretability, and reliability of explanation
methods. Building upon these foundations, our research ex-
tends these evaluation strategies to the field of semantic seg-
mentation, proposing customized measures that consider the
complexities of segmenting intricate visual scenes.

3. PROPOSED XAI EVALUATION FRAMEWORK

The question of how different XAI methods shed light on the
influential features that influence the pre-trained model’s de-
cisions. Through this surge, we propose four XAl evaluation
strategies, explained as follows:

e S1-Background Only: Removing highlighted pixels from
the original image to observe the impact on the model’s
segmentation score, thus evaluating the crucial importance
of the identified features. We mask the relevant high-
lighted pixels from the original image, creating a new ver-
sion of the image without these pixels. We fed this masked
image for a second time into the model, measuring by how
much the segmentation score drops. A big drop means that
the highlighted pixels were crucial, showing that the XAI
method effectively identified important features.

e S2 - Highlighted Only: Isolating XAl-highlighted pixels
from the background to pinpoint the features influencing
the model’s decisions. We zoom in on the highlighted
pixels from the XAl heat map by masking the background.
This brings out a new image of just the highlighted pix-
els, which will help to better understand which features
the model is relying on, without the distraction of other
background information. In this case, in contrast to S1, a
lower drop in the segmentation score means that the corre-
sponding XAl method is better.

e S3 - Predicted Mask, Ground Truth (PMGT): Observ-
ing the change in the segmentation score using S1 and
S2 is not sufficient due to the spatial correlation between
neighboring pixels. An XAI method for the segmenta-
tion task is supposed to highlight relevant pixels, regard-
less of whether these relevant pixels belong to the target
class or any other classes. Therefore, simply monitoring
the change in the segmentation score of the target class is
insufficient to track how well the XAI method performs.
To resolve this issue, we introduce the PMGT evaluation
strategy that can be expressed in two forms as follows:

— XAI U PM: where we combine the XAI heatmap
with the predicted target areas of the model to see
which XAI method highlights the most relevant pix-
els for model prediction. This allows us to visualize
which XAI method shows the most important pix-
els that help the model make its predictions, even if
those predictions are not perfect.

— XAI U GT: comparing XAl-highlighted pixels with
actual GT data to assess which method accurately
identifies pixels that truly contribute to optimizing
the model performance. This helps to know which
XAI method highlights the pixels that actually help
to improve the prediction of the model. The XAI
heatmap is wrapped over the ground truth (GT) tar-
get mask. The edited image displays both the real
target class pixels from the GT mask and the ones
that have been highlighted. In this manner, we are
able to measure how selective each XAl method is in
highlighting those specific pixels that actually would
contribute to optimizing the model’s performance.

To quantitatively assess these strategies, we need to go deeper
than simply understanding the final segmentation. Our goal is
to evaluate how well these XAl techniques illuminate the cru-
cial features influencing the model’s decisions. The objective is
to measure how much the XAI highlighted pixels impact each
metric. To achieve this, we propose the following pixel-level
evaluation metrics:

e True Positives (TP): These pixels represent the foundation
for successful segmentation. They signify pixels correctly
identified by the model and the XAI method as belonging
to a specific class.

e False Negatives (FN): These pixels represent missed op-
portunities. The model and XAI method fail to identify
pixels that genuinely belong to a particular class.

o False Positives (FP): These pixels represent misleading ex-
planations. The model and XAI method incorrectly assign
a class label to pixels that don’t belong to that class.
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Figure 1: Proposed XAl evaluation Strategies.

By analyzing these pixel-level measures, we can calculate es-
sential metrics to assess the effectiveness of the XAl method in
terms of:

e Precision: This metric reflects the ability of the XAl method
to pinpoint relevant features. High precision indicates that
the highlighted features genuinely contribute to the model’s
classification. The precision can be expressed as follows:

TP
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e Recall: This metric signifies the completeness of the XAl
method in capturing all the crucial features. A high recall
suggests that the XAI method effectively identifies most
of the influential features. The Recall can be expressed as
follows:

TP
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e F1 Score: This metric strikes a balance between preci-
sion and recall, providing a more comprehensive picture
of the performance of the XAI method. A high F1 score
indicates that the XAl method is accurate and comprehen-
sive in highlighting key features. The F1 score can be ex-
pressed as follows:
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o JoU: This metric assesses how well the XAl method’s high-
lighted pixels overlap with the Ground-Truth (GT) mask,
evaluating the spatial accuracy of the explanations. Higher
IoU scores indicate a better overlap between the XAl method’s
highlighted regions and the ground truth, reflecting a bet-
ter localization accuracy. The IOU score can be expressed
as follows:

TP

U= PN
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4. SIMULATION RESULTS

To evaluate our proposed XAl evaluation framework, we per-
formed experiments using various adapted CAM-based XAl
methods for semantic segmentation [Gizzini et al., 2024], in-
cluding: Grad-CAM, Grad-CAM++, XGrad-CAM, Score-CAM,
Ablation-CAM, and Eigen-CAM. The experiments are performed
on the WHU Building Dataset [Luo et al., 2023], a high-quality
resource for building segmentation tasks to test these methods
in a real-world context. The simulations are conducted on a
GPU-powered environment using CUDA 12, ensuring fast and
efficient processing.

In the conducted experiments, we follow a structured approach
to evaluate the performance of the considered XAI methods.
First, the XAI methods are applied to the input images, produc-
ing corresponding heatmaps highlighting the regions the model
deemed important to segment the building target class. These
heatmaps are then subjected to a thresholding process using



Threshold XAI/Matrix Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
TP Pixels 49431 45259 39680 45238 25906 46990 45228
TP Pixels (%) 93.58 85.68 75.12 85.64 49.05 88.96 85.62
Drop %(Higher better) 7.90 18.46 7.94 44.53 4.62 7.96
FP Pixels 2886 2806 4275 2847 3846 5622 3095
0.4 FP Pixels (%) 1.38 1.34 2.04 1.36 1.84 2.69 1.48
Increase % (Higher better) -0.04 0.66 -0.02 0.46 1.31 0.10
FN Pixels 3390 7562 13141 7583 26915 5832 7593
FN Pixels (%) 6.42 14.32 24.88 14.36 50.95 11.04 14.38
Increase % (Lower better) 7.90 18.46 7.94 44.53 4.62 7.96
Table 1: Pixel-level performance evaluation of S1.
Thresholds Method Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
IoU (Micro) 0.89 0.81 0.69 0.81 0.46 0.80 0.81
04 Precision 0.94 0.94 0.90 0.94 0.87 0.89 0.94
’ Recall 0.94 0.86 0.75 0.86 0.49 0.89 0.86
F1 0.94 0.90 0.82 0.90 0.63 0.89 0.89

Table 2: Pixel-level performance evaluation of S1. Lower metric value signifies better XAI scheme and vice versa.

four thresholds (0.2, 0.4, 0.6, 0.8) to isolate the relevant areas of
interest. For each threshold, the proposed evaluation strategies,
that is, S1 (Background Only), S2 (Highlighted Only), and S3
(PMGT strategy), are applied to generate modified versions of
the images. Subsequently, pixel-level metrics, including TP, FP,
FN, precision, recall, F1 score, IoU, are then computed to assess
the performance of each X Al method quantitatively. Finally, we
note that, based on the evaluation across various thresholds, 0.4
demonstrates a good trade-off between the considered metrics,
as it provides the most meaningful information on the impact of
background removal. Therefore, subsequent analysis will focus
exclusively on the results obtained at threshold = 0.4. In the
next sections, we will discuss the results per evaluation strat-

egy.
4.1 S1: Background only

Tables 1 and 2 show the performance evaluation at the pixel-
level using the S1 strategy employing the considered thresholds.
Recall that in the S1 strategy, the objective is to remove the rel-
evant highlighted pixels that contribute to building segmenta-
tion and to keep the background pixels. The highlighted pixels
are removed each time according to different thresholds. It is
worth mentioning that the XAI scheme that achieves a higher
drop in the segmented TP pixels outperforms the other XAl
schemes. This is because when the highlighted important pixels
are removed, the model is supposed to misclassify the TP pixels
within the target class. In contrast, a higher increase in the FP
and FN pixels reveals that the corresponding XAl scheme is the
best because removing the relevant highlighted pixels should in-
crease the erroneously segmented pixels outside the target class
(FP pixels) and the correct unsegmented pixels within the target
class (FN pixels), respectively.

As we can notice, Score-CAM retains its position as the top per-
forming method for TP pixel drop (44.53%), followed by Grad-
CAM++ (18.46%). The performance gap between the top and
bottom ranked methods widened, highlighting the robustness
of Score-CAM. For FP, Eigen-CAM shows the highest increase
(1.31%), closely followed by Score-CAM (0.46%) and Grad-
CAM++ (0.66%). FN analysis again highlighted Score-CAM
as the most effective method with an increase of (-44.53%),
strengthening its ability to isolate and preserve critical features

in masked images. We can clearly notice that Score-CAM achieves

the highest values in both Precision and Recall, confirming that
the regions it identified were accurate and essential for correct

segmentation. A higher Precision indicates that the model was
more focused and less likely to wrongly classify background
pixels as part of the target class, while a higher Recall means
that it still managed to correctly identify most of the true tar-
get pixels. Together, these results reinforce that Score-CAM
not only highlights the most important features but also does so
with minimal noise or distraction, making it the most reliable
and effective XAI method.

Since the S1 strategy masks highlighted pixels, it cannot deter-
mine whether the remaining background pixels contain mean-
ingful information. To address this limitation, it is beneficial to
evaluate performance using the S2 strategy, where this comple-
mentary approach isolates highlighted pixels and evaluates their
importance without the distraction of background data, provid-
ing deeper insights into the efficacy of XAI methods.

4.2 S2: highlighted only

Tables 3 and 4 show the performance evaluation employing
the S2 strategy. Recall that by employing the S2 strategy, we
keep the XAl-highlighted pixels to assess their direct influence
on the model predictions of building target pixels. The results
show considerable variations among the different XAl methods.
For TP pixel, Score-CAM performs best, with the lowest drop
(18.79%), indicating that the highlighted pixels are the most
relevant for the model predictions. This is followed by Grad-
CAM (38.78%), XGrad-CAM (40.69%), and Ablation-CAM
(42.46%). These methods maintain reasonable performance,
suggesting that they also highlight relevant regions, although
less effectively than Score-CAM. In contrast, Grad-CAM++
and Eigen-CAM show the largest drops at (44.6%) and (46.12%),
respectively, highlighting less critical features and negatively
impacting the model’s accuracy. For FP Pixels, which mea-
sures how well irrelevant areas are excluded from the model’s
attention, the performance ranking changes. Eigen-CAM and
Score-CAM excel in this aspect, with an increase of (41.71%)
and (44.44%), respectively, indicating that these methods help
the model focus on the relevant areas while excluding unneces-
sary ones.

Grad-CAM, XGrad-CAM, and Ablation-CAM, on the other hand,
show weaker performance, especially Grad-CAM with the high-
est increase (71.56%), suggesting that it often highlights irrele-
vant regions, thus contributing to higher false positives. When
we turn to FN pixels, which reflect the failure of the model



Threshold XAl/Matrix Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
TP pixels 49431 28948 25871 27938 39505 25067 27003
TP Pixels (%) 93.58 54.80 48.98 52.89 74.79 47.46 51.12
Drop %(Lower better) 38.78 44.6 40.69 18.79 46.12 42.46
FP pixels 2886 152690 123876 148112 95918 84419 141878
0.4 FP pixels (%) 1.38 72.94 59.18 70.76 45.82 40.33 67.78
Increase % (Lower better) 71.56 57.80 69.38 44.44 41.71 66.40
FN pixels 3390 23873 26950 24883 13316 27754 25818
FN pixels (%) 6.42 45.20 51.02 47.11 25.21 52.54 48.88
Increase % (Lower better) 38.78 44.60 40.69 18.79 58.96 42.46
Table 3: Pixel-level performance evaluation of S2.
Threshold Method Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
IoU (Micro) 0.89 0.14 0.15 0.14 0.27 0.18 0.14
04 Precision 0.94 0.16 0.17 0.16 0.29 0.23 0.16
’ Recall 0.94 0.55 0.49 0.53 0.75 0.47 0.51
F1 0.94 0.25 0.26 0.24 0.42 0.31 0.24

Table 4: Pixel-level performance evaluation of S2. Higher metric value signifies a better XAl scheme and vice versa.

to recognize relevant features, Score-CAM continues to per-
form strongly with the lowest increase (18.79%). This indicates
that Score-CAM is better at identifying key features, leading to
fewer missed detections. In comparison, Grad-CAM (38.78%),
XGrad-CAM (40.69%), and Ablation-CAM (42.46%) all show
highest increase, which means they miss more crucial features.
Eigen-CAM performance is the poorest, with the highest in-
crease (58.96%), suggesting that it fails to highlight critical fea-
tures and leads to many false negatives. On the other hand,
Precision tells us how accurate a method is when it highlights
pixels, meaning how many of those highlighted pixels are ac-
tually important. A high precision score means the method is
doing a good job of avoiding noise and irrelevant areas. In this
case, Score-CAM came out on top with a precision of 0.94,
showing its strong ability to focus on meaningful regions. Grad-
CAM and Ablation-CAM also scored 0.94, which suggests that
they’re equally good at staying focused. Other methods like

XGrad-CAM (0.90), Grad-CAM++ (0.87), and Eigen-CAM (0.87)

didn’t perform quite as well in this regard, meaning they were
more likely to highlight less relevant parts of the image.

Recall, on the other hand, is about how complete the method
is, meaning how many of the truly important pixels it actually
managed to detect. Ablation-CAM led here with a recall of
0.91, which means it successfully captured most of the key re-
gions. Grad-CAM and Score-CAM followed closely, with re-
call scores of 0.88 and 0.86, respectively. These methods did a
solid job of covering the relevant areas. But methods like Grad-
CAM-++ (0.75) and especially Eigen-CAM (0.47) missed a lot
of important features, which could hurt their usefulness in real-
world applications. Finally, we have the F1 score, which com-
bines both precision and recall into a single number. It helps
give a more balanced view of how reliable each method is over-
all. Score-CAM once again stood out, scoring 0.90, confirming
its consistency in both highlighting the right pixels and covering
all the important areas. Grad-CAM and Ablation-CAM also did
well, each scoring 0.89. Meanwhile, Grad-CAM++ and Eigen-
CAM had much lower F1 scores of 0.63 and 0.42, revealing
that they struggled to maintain a good balance between accu-
racy and completeness.

In summary, Score-CAM is the best performing XAl method in
terms of both qualitative analysis (TP, FP, and FN pixels), and
quantitative metrics (Precision, Recall, and F1-score). It con-
sistently ranks first in all metrics, showing its ability to high-
light the most relevant pixels. However, Eigen-CAM and Grad-

CAM-++ perform the worst, particularly in terms of recall and
false positives, making them less reliable to guide the model
decision-making process.

43 S3: XAIUGT

In the context of XAI methods for segmentation tasks, high-
lighting inside and outside the target class refers to how well
these methods identify not only the pixels that belong to the tar-
get class but also those that might not directly belong to the tar-
get class but still play a significant role in the model’s decision-
making process. To assess the sensitivity of XAI methods on
segmenting all the target pixels, we compare the union of the
highlighted pixels generated by the XAI and the ground truth
segmentation mask (XAI U GT). This measure identifies to
what degree the explanation maps include relevant target class
pixels and potentially explanatory neighboring pixels. It pro-
vides a baseline for understanding whether the XAI methodol-
ogy picks up all semantically important regions as defined by
the ground truth to set the scene for comparison to the model’s
own predicted outcome in the subsequent section.

Grad-CAM is the foundational method that utilizes the gradi-
ents flowing into the last convolutional layer to produce a rough
localization map. The TP pixel count of 30,488 reflects its abil-
ity to detect relevant regions, but the high FP count of 108,607
implies an overextension into irrelevant areas, as shown in Ta-
ble 5. This is also confirmed by its low precision of (0.22),
which signifies that many of the highlighted pixels are not part
of the target class, as illustrated in Table 6. The IoU score of
(0.19) illustrates its struggle with segmentation accuracy. De-
spite these limitations, the high recall of (0.58) suggests that
Grad-CAM is effective at capturing most of the relevant pix-
els, albeit with considerable noise. Grad-CAM++ refines the
Grad-CAM approach by more effectively weighting the gradi-
ents, offering a sharper focus on significant pixels both inside
and outside the target structures. This is reflected in the in-
crease in the TP count of 32,385 and the reduction in the FP
count of 103,893. The increased precision (0.24) and the IoU
(0.21) show a better-focused heatmap that is still extensive but
more accurate than its predecessor. Its high recall (0.61) high-
lights its ability to capture the most relevant areas, making it
a balanced method for identifying important pixels within and
around the target class.

XGrad-CAM builds on the Grad-CAM++ approach by consid-
ering gradient information across multiple layers, further em-



Threshold XAI/Method Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
TP pixels 49431 30488 32385 30603 45413 33365 30950
TP Pixels (%) 93.58 57.72 61.31 57.94 85.97 63.17 58.59
Drop %(Lower better) 35.86 32.27 35.64 7.61 30.41 34.99
FP pixels 2886 108607 103893 107803 79348 60037 107555
0.4 FP pixels (%) 1.38 51.88 49.63 51.50 37.91 28.68 51.38
Increase % (Lower better) 50.5 48.25 50.12 36.53 27.30 50.00
FN pixels 3390 22334 20436 22218 7408 19456 21871
FN pixels (%) 6.42 42.28 38.69 42.06 14.03 36.83 4141
Increase % (Lower better) 35.86 32.27 35.64 7.61 30.41 34.99
Table 5: Pixel-level performance evaluation of S3: XAI U GT.
Threshold Method Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
IoU (Micro) | 0.89 0.19 0.21 0.19 0.34 0.30 0.19
04 Precision 0.94 0.22 0.24 0.22 0.36 0.36 0.22
’ Recall 0.94 0.58 0.61 0.58 0.86 0.63 0.59
F1 0.94 0.32 0.34 0.32 0.51 0.46 0.32
Table 6: Pixel-level performance evaluation of S3: XAI U GT. Higher metric value signifies a better XAl scheme and vice versa.
Threshold XAl/Method Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
TP pixels 49431 29475 31745 29512 45253 32331 29913
TP Pixels (%) 93.58 55.80 60.10 55.87 85.67 61.21 56.63
Drop %(Lower better) 37.78 33.48 37.71 7.91 32.37 36.95
FP pixels 2886 106346 102591 105874 77490 59245 105573
0.4 FP pixels (%) 1.38 50.80 49.01 50.58 37.02 28.30 50.44
Increase % (Lower better) 49.42 48.04 49.2 35.64 26.92 49.06
FN pixels 3390 23346 21076 23309 7569 20490 22908
FN pixels (%) 6.42 44.20 39.90 44.13 14.33 38.79 43.37
Increase % (Lower better) 37.78 33.48 37.71 7.91 32.37 36.95
Table 7: Pixel-level performance evaluation of S3: XAI U PM.
Threshold Method Model | Grad-CAM | Grad-CAM++ | XGrad-CAM | Score-CAM | Eigen-CAM | Ablation-CAM
IoU (Micro) | 0.89 0.19 0.20 0.19 0.35 0.29 0.19
04 Precision 0.94 0.22 0.24 0.22 0.37 0.35 0.22
’ Recall 0.94 0.56 0.60 0.56 0.86 0.61 0.57
F1 0.94 0.31 0.34 0.31 0.52 0.45 0.32

Table 8: Pixel-level performance evaluation of S3: XAI U PM. Higher metric value signifies a better XAI scheme and vice versa.

phasizing the relevance of external regions, indicating that sur-
rounding pixels also play a crucial role in the model’s predic-
tions. Although it has fewer TPs (30,603) and a high FP count
(107,803), its recall (0.58) and slightly improved precision (0.22)
indicate a more refined but still expansive approach, where ex-
ternal pixels frequently play a significant role. Score-CAM
stands out due to its method of generating heatmaps based on
the model’s score output rather than gradients. This direct method
produces a high TP count of 45,,413 and a comparably low FP
count of 79,348. Its high IoU of 0.34 and precision of 0.36
demonstrate a pointed identification of meaningful regions, high-
lighting broader regions around the buildings. Its high recall of
0.86 underscores its ability to pinpoint the most influential pix-
els, providing a clear and focused interpretation of pixel impor-
tance.

Eigen-CAM uses principal component analysis (PCA) on fea-
ture maps, offering a unique view that captures a balance of
high- and low-importance regions. This method achieves a TP
count of 33,365 and a FP count of 60,037. With an IoU of 0.30
and a precision of 0.36, Eigen-CAM offers a deep contextual
understanding of pixel relevance, effectively highlighting both
the target and its surrounding context. Its recall of 0.63 further
supports its balanced approach, demonstrating its ability to cap-
ture significant pixels without excessive noise. Ablation-CAM
employs systematic removal of input parts to observe changes
in the output, revealing a dispersed importance pattern. With a

TP count of 30,950 and a high FP count of 107,555, this method
underscores the complexity of model dependency on both target
and adjacent pixels. The lower precision of 0.22 and the IoU of
0.19 indicate its broad influence, capturing extensive areas of
importance. However, its recall of 0.59 shows that Ablation-
CAM still effectively identifies relevant pixels, highlighting the
significant role of surrounding pixels in the model’s predictions.

The metrics collectively support the notion that pixels outside
the target class are important for the model’s accurate predic-
tions. The varying performance across these methods demon-
strates the trade-offs between capturing large, relevant areas
and maintaining precision. For instance, methods like Score-
CAM and Eigen-CAM provide high precision and IoU, indi-
cating a more focused relevance of surrounding pixels, while
Grad-CAM and Ablation-CAM reveal a broader but less fo-
cused effect. This suggests that the context provided by sur-
rounding areas is not supplementary, but a fundamental com-
ponent of the model’s understanding and decision-making pro-
cess, proving that external pixels significantly contribute to the
model’s accurate predictions.

44 S3: XAIUPM

To further validate the insights derived from the XAI U GT
evaluation, we also performed an analysis using the predicted
segmentation masks (XAI U PM). This comparison assesses




how well the explanation maps align with the model’s own out-
put, offering a practical perspective on the interpretability of
the segmentation predictions. Interestingly, the results for XAI
U PM closely mirror those obtained from XAI U GT in terms
of TP, FP, precision, recall, and IoU. This consistency rein-
forces the reliability of the XAl methods and confirms that the
highlighted pixels, whether aligned with the ground truth or
the model’s prediction, capture relevant information that influ-
ences the model’s decision-making process. It also emphasizes
that surrounding contextual pixels remain essential, regardless
of the reference mask used, further validating the conclusions
drawn in the previous section.

As shown in Tables 7 and 8, the results of XAI U PM align with
the findings of XAI U GT, supporting the consistency and relia-
bility of XAI methods. Score-CAM continues to over perform,
achieving the highest TP pixel count (47,391), precision (0.47),
recall (0.89), and IoU (0.45), indicating its ability to accurately
highlight relevant regions that align closely with the model’s
output. Eigen-CAM also shows balanced performance with
high TP counts, a moderate FP rate, and an IoU of 0.41, con-
firming its ability to capture both central and contextual pixels
effectively. Grad-CAM++ maintains its improved focus com-

pared to Grad-CAM, with better precision (0.35) and recall (0.88),

while Grad-CAM and Ablation-CAM still maintain higher FP
rates and lower IoU scores, suggesting overgeneralized high-
lighting. XGrad-CAM still reflects moderate performance. Over-
all, Score-CAM and Eigen-CAM remain the most interpretable
and reliable methods in terms of alignment with the model’s
predictions, while others demonstrate trade-offs between recall
and precision. These findings confirm that the highlighted re-
gions, whether they intersect with ground truth or the predic-
tion of the model, carry meaningful information and that con-
text beyond the pixels of the target class significantly affects the
model’s decision process.

5. CONCLUSIONS

In semantic segmentation, the areas around the target object can
play a big role in how well a model performs. Our evaluation
framework, which considers pixel-level evaluation methodol-
ogy, gives a well-rounded way to assess how good different
XAI methods are at highlighting the key parts of an image that
influence model decisions. From our analysis, it’s clear that in-
cluding surrounding pixels and not just the target class helps
the model make better predictions. We saw that methods like
Grad-CAM and Ablation-CAM often highlight large, broad re-
gions, but this can sometimes come at the cost of precision. On
the other hand, methods like Score-CAM and Eigen-CAM are
better at zooming in on what truly matters, striking a nice bal-
ance between focus and coverage. Overall, Score-CAM stood
out as the most effective method. It consistently delivered high
true positive rates, low false positives, and strong precision and
IoU scores. In short, it does a great job of showing both the tar-
get and nearby important pixels, making its explanations clear
and trustworthy. Even though the rankings of XAI methods
can shift slightly depending on the specific metric used, Score-
CAM remained the most robust and consistent across the board
results. To wrap up, our framework shows that looking beyond
just the target class and considering the full context of an im-
age leads to better segmentation predictions. Score-CAM, in
particular, proves to be a reliable and insightful tool for under-
standing how models make decisions. This kind of evaluation
is essential if we want Al systems to be not only accurate but
also transparent and trustworthy.
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