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Abstract

The sustainable management of the Qaraaoun Reservoir, the largest surface water body in Lebanon, located in the Bekaa Plain,
hinges on reliable monitoring of its storage volume despite frequent sensor malfunctions and limited maintenance capacity. This
study introduces a sensor-free approach that integrates open-source satellite imagery, advanced water-extent segmentation, and ma-
chine learning to estimate the reservoir surface area and then the volume in near real-time. Sentinel-2 and Landsat 1-9 images are
processed where surface water is delineated using a newly proposed water segmentation index. A machine learning model based
on Support Vector Regression (SVR) is trained on a curated dataset that includes water surface, water level and water volume cal-
culation using reservoir bathymetry survey. The model is then able to estimated waterbody volume relying solely on water surface,
extracted from satellite imagery without the need of any ground measurements. Water segmentation using the proposed index aligns
with ground truth over 95% of the shoreline. Hyperparameter tuning with GridSearchCV yields an optimized SVR performance
with error under 1.5% of full reservoir capacity and coefficients of determination exceeding 0.98. These results demonstrate the
method’s robustness and cost-effectiveness, offering a practical solution for continuous, sensor-independent monitoring of reservoir
storage. The proposed methodology can be replicated to other water bodies, and the resulting 50+ years of time-series data is crucial
for researchers studying climate change and environmental patterns.

1. INTRODUCTION However, challenges such as sensor malfunction and human er-

ror pose significant risks to accurate data collection, potentially

The Qaraaoun Reservoir (QR) is located at an average alti-
tude of approximately 850 meters in the central Bekaa Valley,
between the Lebanon Mountains and the Anti-Lebanon range.
The reservoir lies near the Qaraaoun village, and specifically
between the following geographic coordinates: 33°35’37"N,
33°32’53"N and 35°40’56"E, 35°42’26"E and was formed in
1959 by the construction of the Qaraaoun Dam across the Litani
River. With a storage capacity exceeding 220 million cubic me-
ters, the reservoir receives water from snow and rainfall and a
number of existing springs and serves as a vital water resource
for the region and supplies water to about 1 million people. This
large volume buffers seasonal rainfall variability and provides
a stable water supply that supports extensive irrigation systems,
enhancing agricultural productivity in the valley. During ex-
treme droughts, the reservoir plays a critical role in meeting do-
mestic and industrial water demands. Additionally, its storage
capacity contributes to hydroelectric power generation, about
22% of Lebanon’s electricity, making it an essential compo-
nent of regional economic development. These factors under-
score the importance of consistently monitoring and managing
the reservoir’s water volume to ensure long-term sustainabil-
ity and resilience amid declining water availability and climate
change [1,2].

The Litani River Authority (LRA), a governmental agency, is
tasked with the integrated management and sustainable devel-
opment of the Litani River Basin. Its responsibilities include
monitoring water quality and quantity, regulating water distri-
bution, planning water resource projects, and ensuring equitable
access for agricultural, industrial, and domestic use. Specifi-
cally, for the QR, the LRA employs an integrated network of hy-
drometric stations to continuously monitor the volume of water.

compromising effective water management. In many develop-
ing countries, the maintenance of sensor-based technology of-
ten falls short of established standards and best practices due
to financial constraints and a shortage of experienced personnel
in government institutions. As a result, accurate recording of
water volume is often compromised.
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Figure 1: Interactive dashboard showing time-series of water
surface and volume in near real-time in the Qaraaoun Reservoir.

To address these challenges, this article proposes an efficient
sensor-free approach that leverages remote sensing technology
and machine learning to generate accurate weekly estimates of
water volume in the Qaraaoun Reservoir. The contribution of
this paper is three-folds as follows:

e Machine learning model was developed to infer the reser-
voir’s water volume in near real-time from Sentinel-2 and
LandSat 1-9 imagery. The model takes the extracted water



surface area as an input and estimated the corresponding
water volume without relying on any ground-based sensor
readings.

e Because model performance is highly sensitive to the ac-
curacy of the water surface extraction, we introduce a novel
water segmentation index that combines two existing in-
dices from the literature using a weighted sum.

e Finally, we developed an interactive, web-based platform
to visualize volume trends and segmentation results, as
shown in Figure 1. The dashboard hosts a time series of
over 50 years of reservoir statistics and serves as a valuable
tool for researchers and stakeholders to explore environ-
mental patterns and study the impacts of climate change.
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Figure 2: Workflow of the proposed pipeline, from data
acquisition and preprocessing to water surface detection and
volume estimation.

The proposed architecture is illustrated in Figure 2, outlining
the complete workflow—from data acquisition and preprocess-
ing to water surface detection, machine learning-based volume
estimation, and dashboard visualization. Although applied here
to the QR, this architecture is adaptable and can be replicated
for any other water body.

The rest of this paper is organized as follows: Section 2 dis-
cusses water spectral indices and introduces a very accurate
water segmentation index. Section 3 outlines the implementa-
tion of the Support Vector Regression (SVR) model for volume
estimation and the data preparation process using bathymetric
surveys. Section 4 presents both qualitative and quantitative
findings, emphasizing segmentation accuracy and the model’s

performance based on various metrics. The Conclusion in Sec-
tion 5 underscores the effectiveness of the proposed sensor-free
monitoring approach while acknowledging potential areas for
improvement.

2. WATER INDEX

The detection of the water surface is performed using a set of
spectral indices supplemented with Otsu’s adaptive threshold-
ing. The most widely used index in the literature is the normal-
ized difference in water index (N DW I), which is calculated as
shown in Equation 1:

Green — NIR
NDW[= — 1
w Green+ NIR M

where NDW [ varies from —1 to +1 and the existence of water
will yield a positive value between zero and one. The primary
use of NDW1 is to refine water pixel values to an extreme
yielding a bimodal distribution; subsequently, because of the
way new pixel values are distributed, Otsu’s thresholding tech-
nique will be able to successfully capture an optimal threshold
for separating water from non-water pixels.

Qaraaoun reservoir has an abundant presence of vegetation and
soil, which can be mistaken for water. N DW I is effective in
distinguishing areas of vegetation and soil from water. Water
typically exhibits low reflectance in both Green and NIR bands,
leading to high values of NDW I, making it easier to distin-
guish it from other land covers.

While NDW 1 is widely used in the literature, multiple stud-
ies have shown that spectral indices like M NDW I [9] and
ANDWTI [10] might outperform NDW in faithfully sepa-
rating water pixels from noise especially in turbid and built-up
areas. A careful choice of spectral indices is indeed pivotal for
accurate water detection.

The effectiveness of water indices for detecting surface water
extent varies depending on seasonal and geographic factors.
The Qaraaoun Reservoir experiences significant shadowing ef-
fects from surrounding mountain chains that alter the optical
properties of satellite images. This leads to inaccurate clas-
sification, as pixels in shadowed regions exhibit low spectral
reflectance. These non-water properties can reduce the accu-
racy of existing water indices, leading to segmentation errors at
different times of the year. Therefore, selecting the most appro-
priate water index is crucial to ensuring reliable surface water
extent detection.

In other words, non-water pixels and water pixels may have
similar spectral reflectance. However, while shadowing can
pose a problem, its impact is relatively minimal compared to
that of soil and vegetation, which significantly hinders accurate
segmentation. This observation makes the Automated Water
Extraction Index — Non-Shadow (AW EInsh) a natural choice,
as it is specifically designed to enhance the detection of wa-
ter features in satellite images. It leverages multiple spectral
bands, including the Near Infrared (NIR) and Shortwave In-
frared (SWIR) bands, to maximize contrast between water and
non-water features [10]. The mathematical formulation for cal-
culating AW EInsh is shown in Equation: 2:

AW EInsh = 4 x (Green — SWIRy) — (0.25 X NIR + 2.75 x SWIR,)
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(a) NDW I water segmentation results.

(b) AW EInsh water segmentation results.

(c) WCW I water segmentation results.

Figure 3: Comparison of water segmentation results using different water indices: (a) NDW I, (b) AW EInsh and (c) WCW I

composite index on a Sentinel-2 imagery from 17 October 2023 where yellow outlines represent the nominal lake contour and red

indicate detected water extent.

To make use of both NDW I and AW EInsh indices, a weighted
sum referred to as Weighted Composite Water Index (W CW I)
is proposed here.The newly proposed water index is illustrated
in Equation 3:

WCWI =08 x AWEInsh+02x NDWI 3)

Results in Figure 3 show the performance of the three indices
NDWI, AW EInsh and WCW | on a Sentinel-2 for the QC
dated on 17 October 2024. Itis clear in Figure 3(a) that NDW I
struggles to segment water extent when color varies sharply
in the reservoir. AW EInsh on the other hand results in few
segmentation errors towards the center of the reservoir. It also
suffers from under-segmentation at the upper narrow upstream
channel of the lake within shallow water and minimal width al-

though not easily visible to the naked eye. The under-segmentation

in Figure 3(b) reduces the total water surface area, consequently
leading to an underestimation of water volume. in contrast,
the proposed W CW I produces an accurate water segmenta-
tion mask, as demonstrated in Figure 3(c). This analysis was
performed on dozens of images across the time-series; however,
due to space limitations, we present only one representative ex-
ample here and additional results are provided in the Results
section.

3. MODEL DESIGN

In an effort to improve water management in the Qaraaoun Reser-
voir, the Litani River Basin Management Support (LRBMS)
program was initiated in 2013 and conducted a bathymetric sur-
vey of the reservoir. The survey aimed to assess sedimentation

by comparing recent depth data with a topographic map from
1950. The survey was conducted through a series of east-west
and west-east crossings using a boat equipped with a Doppler
flow meter (River Surveyor). This process produced high-resolution
depth profiles used to establish an updated level-volume curve
that serve as the definitive ground-truth for all subsequent vol-
ume estimations [5].

Existing bathymetry data was first digitized and geo-referenced
and transformed it into a digital elevation model (DEM). Dis-
crete depth measurements were then interpolated using the “Near-
est Neighbor” method to create a continuous surface represent-
ing the lake elevation. Using the DEM, a simulation of various
water levels that the reservoir might experience was performed.
We then utilized ground truth data collected from the hydromet-
ric station on the QR to construct a dataset comprising: (i) wa-
ter level measurements obtained from on-site sensor readings,
(ii) water surface area extracted from satellite imagery using
the proposed accurate water index, and (iii) water volume esti-
mates computed using the water level, surface area, and reser-
voir bathymetry. This dataset was then used to train a machine
learning model capable of inferring water volume solely from
water surface input, thereby eliminating the need for water level
measurements and enabling a sensor-free estimation approach.

Water bodies tend to fill in a nonlinear manner because they
possess extremely complex geometry, and thus Support Vector
Regression (SVR) appears to be a suitable model of choice for
describing the correlation between water surface percent and
water volume. In supervised learning, the SVR model was
trained from the built dataset with the water surface percentage
as the input feature and relative water volumes as the output
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Figure 4: Water segmentation results in red versus ground truth values in blue; (a) and (b) Sentinel-2 imagery for 1 March 2023, (c)
and (d) LandSat 8 imagery for 21 January 2023, (e) and (f) Sentinel-2 imagery for 26 September 2024 and (g) and (h) Landsat 8
imagery for 8 June 2024. Nominal lake contour is shown in yellow.

target. The data was divided into training and test sets, where
80% of the data was utilized for training and the other 20% for
testing. To enhance model convergence as well as accuracy, a
Min-Max scaler was applied to both sets to normalize the val-
ues of the data to a range of [0,1]. First, an SVR model with an
RBF kernel and standard hyper-parameters was instantiated.

Subsequently, a careful hyper-parameter optimization process

was conducted with GridSearchCV and 10-fold cross-validation.

This vigilant process tuned the critical parameters relative to the
adverse mean squared error criterion and calculated optimal hy-
perparameter values of C = 1000, epsilon = 0.0004, and gamma
= 9. The model with these settings gave an average Mean Ab-
solute Error (M AFE) of approximately 0.0122 and a Root Mean
Squared Error (RM SE) of approximately 0.0216 over the test
set. The M AFE provides an average estimate of the absolute
difference between the predicted and actual values, demonstrat-
ing high precision, while the RM SE, penalizing larger errors
more severely, enforces the model to pick up on the underly-
ing nonlinear relationship. This process of training and tuning
produced a robust inference model for accurate water volume
estimation in the Qaraaoun Reservoir. Additional results are
provided in the next section.

4. RESULTS

Results were gathered and analyzed to assess the segmenta-
tion and volume estimations obtained from the rigorous solu-
tion presented in this paper. Assessing segmentation accuracy
was carried out through comparing water segmented imagery
obtained from the algorithm described earlier and ground truth
imagery. In Figure 4, Sentinel-2 and Landsat-8 imagery were
used for qualitative analysis. Figures 4(a), 4(c), 4(e) and
4(g) show that the proposed approach was able to faithfully cap-
ture the lake’s water extent with high accuracy (more than 95%
along the shoreline), in comparison to the ground truth in Fig-
ures 4(b), 4(d), 4(f) and 4(h); respectively. The yellow contour
represents the lake’s nominal boundaries, while the red outline
indicates the water segmentation result, and the blue contour
shows the manually labeled ground truth water mask. Small
under-segmented gaps appear in the narrow upstream channel
north of Saghbine and along the eastern shore. Shallow turbid
water and wet soil occasionally leads to under-segmentation,
which was extremely minimized in our case by relying on the
proposed W CW I index.

According to volume time-series shown in Figure 5, the high-
est recorded surface water coverage occurred on 23 May 1992
with an estimated water volume of 182, 802, 172 m?, while the
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Figure 5: Time series (1973-2025) of water surface area and storage volume in the Qaraaoun Reservoir. July 2025 recorded an

exceptionally low volume (49.2 x 10° m3), representing a 66% decline from July 2024 and 56% from July 2023, highlighting an

emerging drought signal.

lowest recorded coverage was on 18 January 1982, with a wa-
ter volume of 12, 491, 132 m>. This time series illustrates the
percentage of water surface area and volume estimation over a
50+ year period for the Qaraaoun Reservoir.

Quantitative analysis is grounded upon evaluating different er-
ror metrics to highlight different aspects of the SVR model’s
overall performance against the LRBMS volume measurements.
Employed error metrics include Mean Absolute Error (M AE),
Root Mean Standard Deviation Ratio (RSR), Mean Absolute
Percentage Errors (M APFE), Root Mean Square Error (RM SE),
Coefficients of determination (R?) and Percent Bias PBIAS,
chosen in accordance with their relevance to the proposed near

real-time water volume monitoring application. M AE and RM SE

quantify prediction errors, M AP E represents relative accuracy,
while RS R contextualizes error spread against natural variabil-
ity. R? values explain the model’s ability to explain observed
fluctuations and PBIAS is for assessing tendencies in predic-
tion bias.

As depicted in Table 1, all metrics meet or exceed scholarly
thresholds for SVR volume estimations using LandSat imagery
only. In 2023, M AE was 5.10 and RM SE 5.70, while in 2024
M AFE rose modestly to 7.50 and RM SE to 10.50. These val-
ues remain well within acceptable bounds, underscoring prac-
tically negligible absolute deviations relative to reservoir stor-
age. Both years achieved M APFE under 6% (4.72% in 2023
and 5.69% in 2024), classifying the forecasts as “highly accu-
rate” [6]. RS R stayed well under 0.7 (0.216 and 0.203 in 2023
and 2024, respectively), indicating statistically robust residual
distributions [7]. Coefficients of determination (R?) of 0.989
and 0.985 far exceed the 0.7 benchmark for satisfactory en-
vironmental models, explaining over 98% of volume variance
[8]. Finally, PBIAS of —4.57% and —5.14% lies comfortably
within £25%, demonstrating no significant systematic error [6].

For SVR estimations on Sentinel-2-based imagery, across both
2023 and 2024, Table 2 demonstrates again that the model is
consistent and maintains strong performance against scholarly
benchmarks. In 2023, the model achieved an M AFE of 4.53 and
a RMSFE of 5.22, rising in 2024 to M AFE of 7.08 and RM SE
of 9.85; absolute deviations that remain negligible in practi-
cal terms. Both years produced M APE below 6% (4.28% in
2023 and 5.22% in 2024), classifying them as “highly accu-
rate” forecasts [7]. RSR remained well under the 0.7 thresh-
old (0.194 and 0.200 in 2023 and 2024 respectively), indicating
statistically robust residual distributions [6]. R? of 0.988 and

0.983 far exceed the 0.7 benchmark for satisfactory environ-
mental models, explaining over 98% of volume variance [8].
Finally, PBIAS values of —4.11% and —4.74% lie well within
the +25% “‘satisfactory” range, confirming no significant sys-
tematic error [6].

Metric 2023 | 2024
MAE (10° m®) 5.1 7.5

RMSE (10°m?®) | 5.7 10.5
MAPE (%) 472 | 5.69
RSR 0.216 | 0.203
R2 0.989 | 0.985
PBIAS (%) 457 | -5.14

Table 1: Volume estimation accuracy metrics for Landsat
Imagery in years 2023 and 2024

Metric 2023 | 2024
MAE (10° m3) 453 | 7.08
RMSE (10°m?) | 522 | 9.85
MAPE (%) 428 | 5.22
RSR 0.194 | 02

R2 0.988 | 0.983
PBIAS (%) 411 | 474

Table 2: Volume estimation accuracy metrics for Sentinel-2
Imagery in years 2023 and 2024

The qualitative and quantitative results demonstrate that our so-
lution pipeline reliably segments and predicts Qaraaoun Reser-
voir volumes across sensors and years. Segmentation aligns
with ground truth > 95% of the shoreline, and volume estimates
exhibit < 6% relative error, RSR ~ 0.2, R2> 0.98, and negligible
bias; exceeding established hydrologic and forecasting bench-
marks. This confirms the tool’s suitability for cost-effective,
sensor-free operational monitoring of reservoir storage. Fur-
thermore, a multi-year water persistence analysis (2016-2024)
was performed to evaluate the spatial stability of surface water
coverage in the reservoir as depicted in Fig. 6. The persistence
map reveals a stable central core that remains water covered
for more than 300 days annually, while shoreline regions ex-
hibit high variability, with coverage durations often below 150
days. These fluctuating margins correspond to seasonal inflows
and interannual droughts, reinforcing the temporal variability
observed in the long-term volume record.
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Figure 6: Water persistence map of the Qaraaoun Reservoir (2016-2024), derived from Sentinel-2 imagery. Blue areas indicate

permanent water coverage (>300 days), while yellow to red areas represent ephemeral or seasonal water presence (<150 days). The

map reveals a stable reservoir core alongside variable shoreline zones, consistent with documented hydrological variability.

5. CONCLUSION

This study proposes an innovative approach to monitor water
volume of the Qaraaoun Reservoir in real-time through the uti-
lization of open-source satellite imagery, along with the use of
a well-documented solid pipeline for water extent detection and
advanced machine learning algorithms. Through thorough ex-
amination, highly accurate segmentation and reliable volume
estimations were achieved. The results demonstrated how our
methods contributed to building a cost-effective, sensor-free so-
lution with minimal error and resilience against environmen-
tal challenges. Despite its promising outcomes, this solution
presents certain challenges and limitations that come with the
reliance on satellite data, such as atmospheric interference, which
has a direct impact on segmentation accuracy. In addition to
that, the chosen water index must be well-tailored in accor-
dance with the local geographic features and seasonal changes
and mechanism of water inflow into the reservoir. However, by
combining multiple indices and enhancing the inference model,
we were able to pave the way for durable monitoring systems.

The Qaraaoun Reservoir is a vital source for Lebanon’s agri-
culture (more than 40.000 ha) and water supply, which stands
to benefit greatly from this tool, especially with limited infras-

tructure and sensor malfunctions. This research highlights the
potential of remote sensing and machine learning in overcom-
ing local challenges and advancing water management practices
for developing countries. Moving forward, further optimization
of the algorithm and model, alongside more extensive real-time
data integration, could contribute to the long-term sustainabil-
ity and resilience of the reservoir, ensuring its ability to sup-
port Lebanon’s water needs amid changing climatic conditions.
Also, the integration of water quality indices extracted from
LandSat and Sentinel imagery would be a valuable addition to
the proposed dashboard.
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