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Abstract

Synthetic Aperture Radar (SAR) plays a vital role in remote sensing due to its ability to capture high-resolution images regardless
of weather conditions or daylight. However, to transform the raw SAR signals into interpretable imagery, advanced data processing
techniques are essential. A widely used technique for this purpose is the Range Doppler Algorithm (RDA), which takes advantage
of Fast Fourier Transform (FFT) to convert signals into the frequency domain for further processing. However, the computational
cost of this approach becomes significant when dealing with large datasets. This paper presents a Quantum Range Doppler
Algorithm (QRDA) that utilizes the Quantum Fourier Transform (QFT) to accelerate processing compared to the classical FFT.
Furthermore, it introduces a quantum implementation of the Range Cell Migration Correction (RCMC) in the Fourier domain, a
critical step in the RDA pipeline that realigns the received echoes so that the energy from a target is concentrated in a single range bin
across all azimuth positions. The performance of the quantum RCMC is evaluated and compared against its classical counterpart, as
an isolated operation, and then as part of the full classical pipeline, demonstrating the potential of quantum computing in advanced
SAR imaging.

1. INTRODUCTION three-fold as follows:

Synthetic Aperture Radar (SAR) is a powerful active ima-
ging modality widely used in remote sensing due to its abil-
ity to operate independently of weather conditions and ambient
lighting. In a typical SAR system, an airborne or spaceborne

1. Efficient quantum encoding, using as few qubits as pos-
sible, which allows us to encode N features with only
log,(N) qubits.

platform emits microwave pulses toward a target area and re- 2. A quantum-domain Range Cell Migration Correction
cords the backscattered echoes. The raw data collected in this (RCMC) gate, which is a crucial part in the Range Dop-
way encode information about the reflectivity properties of the pler algorithm. Figure 1 shows the proposed RCMC
scene, and transforming it into a usable image requires soph- quantum circuit.

isticated processing to account for the motion of the radar and

the geometry of wave propagation. The Range Doppler Al- 3. Evaluation of the proposed RCMC gate on real SAR
gorithm (RDA) is one of the most widely used methods for data in two setups: (i) isolation on a 64x64 pixel subset
the formation of SAR images. Its computational core relies on Sentinel-1 SAR data and (ii) integration in a full classical
the Fast Fourier Transform (FFT) to convert the data into the RDA.

frequency domain, where key operations such as range com-
pression, Range Cell Migration Correction (RCMC), and —

azimuth compression are performed. However, the complex- o —=° —° ° —° I
ity of FFT O(nlogn), although efficient for moderate data- g —h AN |, |
sets, becqme§ a bottleneck for large—scale or hlgh—resolutlon Amplitude Encoding ortl| reme gate Inverse QFT
SAR applications, where near-real-time processing is often de- G —2 L s L1, |
sirable. In this work, we explore a quantum computing ap-

proach to accelerate the RDA by replacing classical FFT-based qs —3 L 15 Hs L 13 L

steps with their quantum counterparts. The Quantum Four- —
ier Transform (QFT) offers a theoretical exponential speedup

over the FFT, but this advantage is contingent on maintaining Figure 1. Quantum circuit approach for the Data Encoding and
quantum coherence throughout the entire processing pipeline. the RCMC gate implementation.

Measuring quantum states halfway through (e.g., after QFT
but before RCMC) collapses the quantum states, negating the
speedup by losing all superposition information from before the
measurement and limiting it to a singular result. Thus, a prac-
tical quantum RDA must integrate all critical steps, including
RCMC, within the quantum domain to avoid decoherence and
maximize computational gains (Agency, 2023).

The rest of this paper is organized as follows: Section 2 in-
troduces the basic principles of quantum computing, includ-
ing qubits, gates, and unitary operators. Section 3 reviews the
classical Range Doppler Algorithm (RDA). Section 4 presents
the proposed quantum circuit implementation of the RDA, with
emphasis on the Quantum Fourier Transform (QFT) and the
To address these challenges, the contribution of this paper is Quantum Range Cell Migration Correction (QRCMC) gate.



Section 5 evaluates the performance and correctness of our
quantum approach through simulations on real SAR data in
isolation and in integration in a full classical RDA. Finally, Sec-
tion 6 summarizes our findings and outlines directions for future
research in quantum SAR processing.

2. FUNDAMENTALS OF QUANTUM COMPUTING

Classical computation is based on bits as its fundamental unit
of information, where each bit represents a binary state (0 or
1). For a system with m distinct states, the minimum number
of bits required is n = [log, m]. In contrast, quantum computa-
tion takes advantage of the qubit (quantum bit), which general-
izes the classical bit by leveraging superposition and entangle-
ment (McMahon, 2007).

2.1 The Qubit and Superposition

A qubit’s state |¢)) is represented as a linear combination of
basis states |0) and |1) as shown in Equation 1 :

lv) = a|0) + 1), where o> + |8]* = 1 )

where |a|? and |3|? tell us the probability of finding |¢) in
the states |0) and |1). When a qubit is measured, it will only
be found to be in the state [0) or the state |1). This quality
of superposition is at the core of quantum computing, allow-
ing us to tap into more possibilities with a single qubit, along
with giving us exponential scaling, since n qubits can represent
2" states simultaneously, compared to classical bits, which can
only store one state at a time (McMahon, 2007).

2.2 Quantum States and Basis Representations

A quantum state |1)) can be written as a linear combination of
a basis set |v;) with complex coefficients of expansion c¢; as
shown in Equation 2:

|’l/1> :Zci ‘U7,> = C1 ‘U1> +C2|'U2>+-~-+Cn |Un> (2)

i=1

with >°, |ci|* = 1. The squared modulus of a given coefficient
¢; gives the probability that measurement finds the system in
the state |v;) (McMahon, 2007).

2.3 Quantum Operators and Unitarity

Quantum operators are linear transformations that act on states.
An operator A maps |) to another state A [i)) = |¢). For
quantum computation, the operators must be unitary, satisfying
UU = I, ensuring:

e Reversibility: Reversible operations preserve all quantum
information throughout the computation, which is vital
not only for algorithmic correctness but also for maintain-
ing quantum coherence. Moreover, irreversible operations
would imply loss of information, which contradicts the de-
terministic evolution of isolated quantum systems.

e Probability conservation: Unitary operators preserve the
inner product structure of Hilbert space, which ensures that
the norm of the state vector remains constant during evol-
ution (McMahon, 2007).

2.4 Key Quantum Gates

Quantum gates manipulate qubit states analogously to classical
logic gates but with additional capabilities (e.g., phase shifts,
superposition) (McMahon, 2007). Two critical single-qubit
gates are: Hadamard gate (H) which creates superposition from
computational basis states as shown in Equation 3:

1 /1 1
1=35 0 4) )
where H|0) = |+)
H1)=|-)
) = o2l

Phase gate (P) which introduces a relative phase 6 to |1) as
shown in Equation 4:

1 0
p— (0 ew) @)

P|0) = [0)
P1) =e"1)

where

3. RANGE DOPPLER ALGORITHM

In SAR imaging systems, microwave pulses are transmitted
from an airborne or spaceborne platform towards the target
area. The backscattered echoes are collected and sampled,
producing a two-dimensional raw signal s(r,n) where 7 rep-
resents the range (fast-time) dimension and n denotes the azi-
muth (slow-time) dimension. The Range Doppler Algorithm
(RDA) processes these data into a focused image through se-
quential range and azimuth compression, leveraging Fourier-
domain transformations. The algorithm achieves this through
the efficient utilization of Fast Fourier Transforms (FFTs).

3.1 Classical RDA

The classical RDA consists of four
2007) (Agency, 2019) as depicted in Figure 2:

stages (Dastgir,

1. Range Compression: is the first major processing step
in the Range-Doppler Algorithm (RDA), and its primary
goal is to enhance range resolution by concentrating the
dispersed pulse energy reflected from each target into a
narrow peak. This step significantly improves the signal-
to-noise ratio (SNR) which quantifies how much a signal
stands out from background noise, and prepares the data
for further processing such as Range Cell Migration Cor-
rection (RCMC) and azimuth compression.

In most practical SAR systems, this operation is performed
via frequency-domain matched filtering. Instead of correl-
ating the received signal with the time, reversed transmit-
ted pulse directly in the time domain, a computationally
intensive process—this filtering is efficiently implemented
in the frequency domain using the convolution theorem.
The signal is first transformed into the frequency domain
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using the FFT, then multiplied by a range reference func-
tion G(f), and finally transformed back using the inverse
FFT:

sre(T,n) = IFFT, [FFT- [s(7,n)] - G(f+)] ~ (5)

where G(f-) is the range reference function, (7,7) is the
received raw signal, 7 is the fast time (range), 7 is the
slow time (azimuth). This operation collapses all targets
with identical slant ranges into single trajectories while
preserving phase information.

The matched filter maximizes the SNR by aligning the re-
ceived signal with the known transmitted pulse in phase,
effectively compressing the wide-bandwidth chirp signal
into a sharp spike in time. As a result, echoes from targets
at the same slant range but different azimuth positions be-
come concentrated along single trajectories in the 2D sig-
nal space, while maintaining phase information crucial for
later steps such as interferometry or Doppler processing.

From a signal processing perspective, this filtering sup-
presses range ambiguities and background noise, making
it easier to detect true target reflections. The output sig-
nal after range compression reveals the relative distances
to the targets by the locations of the resulting peaks in the
time domain. The peak amplitudes reflect the intensity of
the backscattered energy, which is influenced by both the
target’s radar cross-section and its distance from the radar.

Visually, the range-compressed data appears as a super-
position of hyperbolic arcs in the (7, 7) plane, where each
arc corresponds to a ground target. These arcs represent
the geometric locus of reflections from a target as the radar
platform moves through the synthetic aperture.

—|  Range H Azimuth FFT H RCMC |—-| Azimuth |—»
compression compression

Figure 2. Block diagram of the classical Range Doppler
Algorithm (RDA) used in Synthetic Aperture Radar (SAR)
imaging.

2. Azimuth FFT: The range-compressed signal is trans-

formed to the azimuth frequency domain as expressed in
Equation 6:

S1 (7—7 f”]) = FFTW [STC(T7 77)} (6)

. Range Cell Migration Correction (RCMC): is a critical
step in the Range Doppler Algorithm (RDA), addressing
the range migration effect caused by the relative motion
between the radar platform and the ground targets during
the synthetic aperture. Due to this relative motion, echoes
from a single point target do not remain in a fixed range bin
over the aperture time but instead migrate across multiple
bins. If uncorrected, this effect degrades image focus and
resolution.

RCMC realigns these dispersed echoes by applying a
phase correction in the range frequency domain, effect-
ively remapping the signal so that each target’s energy is
concentrated in a single range cell. This correction allows
subsequent azimuth compression to be applied correctly,
ensuring that the resulting image is sharp and geometric-
ally accurate.

Mathematically, the correction is applied as a linear phase
shift in the range frequency domain: 7

Greme(fr) = exp {Mﬂff (RO(D(%,,V) B 1)] @

where D(f,,V) = /1 — (Af,/2V)? is the Doppler com-

pression factor, V is the platform velocity, and Ry is
the reference range, f, is the range frequency, and f, is
the azimuth (Doppler) frequency,. This exponential term
serves as a frequency-dependent phase multiplier that cor-
rects for the slant-range curvature introduced by platform
motion. The Doppler compression factor D(f,, V) ac-
counts for the nonlinearity in the trajectory of target re-
turns. As a result, RCMC flattens the curved migration
path of target echoes, allowing them to be coherently in-
tegrated in the azimuth direction.

In implementation, this correction is often performed in
the frequency domain using FFTs, as it allows for efficient
convolution. The phase shift translates into a range shift in
the time domain, aligning all backscattered signals from a
single target.

An intuitive way to understand RCMC is to imagine the
radar moving past a stationary object. At the start of the
aperture, the object appears in one range bin, but as the
radar moves, the geometry changes and the object’s echo
appears to drift” through other range bins. RCMC “un-
does” this drift, essentially straightening a curved path into
a linear one.

. Azimuth Compression:is the final step in the Range-

Doppler Algorithm (RDA), responsible for focusing the
radar returns in the azimuth (along-track) direction and
producing the final high-resolution SAR image. Just as
range compression improves resolution in the range di-
mension by applying matched filtering, azimuth compres-
sion performs an analogous operation in the Doppler (fre-
quency) domain of azimuth.

After the Range Cell Migration Correction (RCMC) step,
the radar data is organized in the range-Doppler domain.
Each row of this two-dimensional dataset corresponds to
a specific slant range, and each column represents a Dop-
pler frequency (related to azimuth). The azimuth signal
for each range bin must now be focused to concentrate the
target energy into a sharp point in azimuth.

This is achieved through matched filtering in the azimuth
frequency domain. The process applies a complex expo-
nential filter designed to reverse the phase evolution impar-
ted by the relative motion between the radar and the target.
The phase history ¢(f.) of a stationary target during the
synthetic aperture is typically quadratic, and correcting it
allows for coherent integration of the received echoes. The
operation is expressed mathematically as: 8:

Sac(T,m) = IFFT, [s2(7, fy) - H(fy)] (®)

s2(7, fy) is the signal after range compression and RCMC,
H(f,) = e"9%Un) is the azimuth matched filter, 7 is azi-
muth (slow) time, f;, is the azimuth (Doppler) frequency.

The matched filter is given by: H(f,) = e 7¢(a) where
¢(fa) is the phase history of the target in the azimuth fre-
quency domain The matched filter H(f,) cancels out the



phase modulation imposed by the radar-target geometry,
which is typically parabolic due to the curved relative mo-
tion of the radar platform. By applying this filter, the al-
gorithm aligns the phases of all echo contributions from
the same target, thereby concentrating their energy and en-
hancing image sharpness in azimuth.

Following the application of the filter, an inverse FFT
(IFFT) is used to transform the frequency-domain signal
back to the azimuth time domain. This step completes the
formation of the SAR image, delivering a focused two-
dimensional representation of the scene with high resolu-
tion in both range and azimuth.

The effectiveness of azimuth compression is crucial for
fine resolution and image clarity. Without it, the energy
of each target would be spread out along the azimuth di-
mension, resulting in blurred and unfocused images. This
step not only ensures geometric accuracy but also plays
a pivotal role in improving contrast and enabling applica-
tions such as change detection or interferometric SAR (In-
SAR).

3.2 Quantum RDA

Building upon the classical RDA framework, the proposed
quantum implementation replaces FFT operations with the
Quantum Fourier Transform (QFT), offering an exponen-
tial speedup in theory. This also means that the whole al-
gorithm from encoding to measurement must be performed in
the quantum domain to actually achieve this speedup (Agency,
2023). The proposed approach is depicted in Figure 3 where
the classical information is first encoded into the quantum do-
main using amplitude encoding. The next steps involve apply-
ing the range compression filter, the RCMC filter, and the azi-
muth compression filter after moving to the frequency domain
and back using QFT (and inverse QFT) applied to the range
and azimuth lines, respectively. More details are provided in
the following.
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Figure 3. Quantum Range-Doppler Algorithm (QRDA):
Proposed quantum circuit implementation of the classical
Range-Doppler Algorithm (RDA).

3.3 Amplitude Encoding

The first step in our algorithm is the encoding step, where we
relied on amplitude encoding technique. Amplitude encod-
ing embeds the information into the probability amplitudes of
quantum states, which is done by first normalizing the dataset
and then initializing the values into amplitudes. In our case,
the encoded information consists of the SAR samples s(7, f,),
made up of complex numbers that contain norm and phase in-
formation for each range and azimuth sample. Amplitude en-
coding is especially powerful because it allows one to encode
N features with only log, (V) qubits; for example, a 16x16
image would require only 16 qubits. Given a classical vector
x = (xo0, 21, ..., LN—1) representing our data, we encode it in a
normalized quantum state as shown in Equation 9:

N—-1
[y = > @:li) ©)
1=0

where |i) are the computational basis states of an n-qubit sys-
tem (for N = 2™). The coefficients x; are the amplitudes that
encode the classical data. The vector must be normalized, that
is, >, |zi|* = 1 (Date, 2024) (Ranga, 2024).

4. QFT AND QRCMC

After successfully encoding the SAR raw data into quantum
states, we can proceed with the application of the Quantum
Fourier Transform (QFT) and the Quantum Range Cell Migra-
tion Correction (QRCMC). The QFT allows efficient transform-
ation into the frequency domain, while the QRCMC applies
precise phase corrections to compensate for range cell migra-
tion due to target motion.

4.1 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the quantum
counterpart of the classical Discrete Fourier Transform (DFT).
For N = 2" samples, the QFT achieves an exponential speedup
over the Fast Fourier Transform (FFT), reducing complexity
from O(n logn) to O(log® n) by exploiting quantum superpos-
ition and entanglement. The QFT transforms a computational
basis state |z) (where « € {0,1,..., N — 1}) into a superposi-
tion of Fourier basis states as depicted in Equation 10:

N-1
1 2mwizk /N
QFT|z) = — e k) (10)
i
where k represents the frequency components for an n-qubit
system (Qiskit, 2023).

The QFT circuit is constructed recursively using:

1. Hadamard gates (H) previously discussed in Equation 3.

2. Controlled phase rotations to encode frequency-dependent
phases defined in Equation 11:

1 0
Ry = 0 e2mi/2t an

The structure of the circuit reflects a recursive decomposition of
the Fourier transform, with each qubit undergoing a Hadamard
gate followed by progressively finer phase rotations conditioned
on higher-order qubits, as illustrated in Figure 4 (Jaffali, 2022).
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Figure 4. Quantum Fourier Transform Gate.




4.2 Quantum RCMC

Seeing that the RCMC filter is a correctional phase shift that re-
aligns received signals shifted due to a moving target or radar,
our aim will be to create a quantum gate that implements the
phase shift coefficients that we have calculated classically. The
RCMC filter, previously discussed in Equation 7, is an array
of phase elements that will filter the main radar data once mul-
tiplied, where each RCMC element needs to be multiplied by
every range line.

To implement this logic in our quantum circuit, we created a
gate that applies the corresponding phase shift to each of the
amplitude encoded data, respectively. Being a phase-only ar-
ray, implementing the filter into a gate that acts on the quantum
states will not alter any of the probability amplitudes. In fact,
making a diagonal matrix out of the RCMC elements (duplic-
ated because each element corresponds to a range line and not
a single sample) will give a reversible unitary gate, which is
exactly what we need. Each element on the diagonal will be
multiplied by the phase of the corresponding state. RCMC im-
plementation is hence proposed here as a diagonal unitary op-
eration as introduced in Equation 12:

Ny
Urcve = @ e’ @ In, 12)

k=1
where O, contains the phase corrections for the & -th range bin,
and I, is the identity on azimuth qubits.
4.3 Circuit Realization

For a minimal 2x2 example (2 range bins x 2 azimuth samples)
illustrated in Figure 1, the RCMC operator takes the following
form shown in Equation 13:

et 0 0
0 €% 0 0
Uremc = 0 0 &% (13)
0 0 0 e

When applied to a state [¢)) = [a1, a2, as, a4]T, it yields to
results as in Equation 14:

e o1

e [

Uremc |%) = 205 (14)

ef2 oy

Where «; is the probability amplitude of each state |:), which
contains the radar phase data, and e“* is the RCMC filter ele-
ment acting on each range line k (containing 2 samples in this
case).

5. RESULTS

We validated our quantum RCMC (Range Cell Migration Cor-
rection) implementation using the Qiskit AerSimulator, a state
vector simulator that emulates an ideal, noise-free quantum en-
vironment (Javadi-Abhari, 2024). To assess correctness, we
compared the quantum outputs against results obtained from

Phase After the Classical RCMC
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Figure 5. Phase difference between classical and quantum RDA
outputs for a 64x64 Sentinel-1 subset. The close match confirms
the quantum implementation’s accuracy.

classical processing on a 64x64 pixel subset of Sentinel-1 SAR
data (Hall, 2025).

As shown in Figure 5, the phase difference plot reveals near-



perfect alignment between the classical and quantum outputs.
This confirms that our quantum algorithm reproduces the ex-
pected classical behavior. The minor discrepancies observed
can be attributed to numerical precision limitations inherent in
floating-point calculations, rather than errors in algorithmic lo-
gic. This test demonstrates the functional correctness of the
proposed quantum RCMC algorithm in isolation.

To evaluate the quantum RCMC'’s real-world applicability, we
integrated the QRCMC gate into a full classical Range-Doppler
Algorithm (RDA) processing chain. For this experiment, we se-
lected a smaller 8x8 subset of real Sentinel-1 RAW data. This
size was chosen deliberately to remain within the practical lim-
its of current quantum simulators, which are constrained by ex-
ponential growth in memory and computation time as the num-
ber of qubits increases. Despite the reduced dimensionality, this
test case is sufficient to validate the algorithm’s end-to-end cor-
rectness.

As illustrated in Figure 6, the resulting phase difference
again demonstrates excellent alignment between the hybrid
(quantum-integrated) and purely classical outputs. Similar to
the isolated test case, any observed discrepancies are minor
and attributable to floating-point numerical precision, not al-
gorithmic faults.

These results confirm that the quantum RCMC component can
be correctly embedded within a full RDA workflow and operate
in conjunction with classical stages, thereby demonstrating its
functional reliability under realistic conditions.

6. CONCLUSION

This work demonstrates the feasibility of quantum accelera-
tion for Earth Observation applications. Our implementation
maintains mathematical equivalence with classical RDA while
being fully executable on quantum hardware, as demonstrated
through simulations of a 64x64 Sentinel-1 SAR subset.

Future work will focus on developing a complete, practical
quantum RDA that integrates all processing steps within the
quantum domain, as achieving a true speedup requires the suc-
cessful implementation of the entire pipeline. Furthermore, fu-
ture advancements in quantum sensors for satellites could elim-
inate the need for data encoding, further enhancing speed and
efficiency.

However, it is essential to recognize that current progress
is bounded by the limitations of Noisy Intermediate-Scale
Quantum (NISQ) hardware. Our results were obtained through
idealized simulations, which do not yet account for decoher-
ence, gate errors, and readout noise that characterize present-
day quantum devices. Addressing these challenges will be
crucial for transitioning from proof-of-concept to deployable
quantum SAR systems.

In conclusion, while we remain in the early stages of quantum
SAR processing, our work offers a solid foundation and a
roadmap toward scalable quantum solutions for remote sens-
ing. As quantum hardware matures and algorithmic techniques
evolve, the integration of quantum computing into Earth Obser-
vation may unlock new levels of performance, precision, and
capability across a range of scientific and operational applica-
tions.
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Figure 6. Phase difference between classical and
quantum-integrated RDA outputs for an 8x8 Sentinel-1 subset.
The high degree of alignment confirms successful integration of

the QRCMC module.
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