

# Efficient Adaptation of Remote Sensing Visual Grounding

Hasan Moughnieh<sup>(1)</sup>, Mohamad Chalhoub<sup>(2)</sup>, Hasan Nasrallah<sup>(3)</sup>, Cristiano Nattero<sup>(4)</sup>, Paolo Campanella<sup>(4)</sup>, Giovanni Nico<sup>(5)</sup> and Ali J. Ghandour<sup>(6)</sup>

(1) American University of Beirut, Beirut, Lebanon

- (2) Lebanese University, Beirut, Lebanon
  - (3) RADIS sarl, Beirut, Lebanon,
- (4) WASDI sàrl, Dudelange, Luxembourg
- (5) Institute for Applied Mathematics, National Research Council, Bari, Italy
  - (6) National Center for Remote Sensing, CNRS, Beirut, Lebanon







### Introduction

**Visual grounding** is a vision-language task that localizes image regions corresponding to textual descriptions.

#### Challenges & Limitations

- Domain Gap: Natural image models don't generalize to remote sensing
- Few Labels: Remote sensing datasets are limited
- Dense Scenes: Overlapping and small objects
- Visual Variability: Weather, lighting, and resolution changes
- Vague Text: Ambiguous or unclear queries
- High Cost: Large image sizes increase compute
- Poor Transferability: Weak generalization to new areas

## **Objective**

Adapt general-domain vision-language models to remote sensing visual grounding using parameter-efficient fine-tuning (PEFT), achieving high performance with minimal computational cost.



## Parameter Efficient Fine-Tuning Techniques (PEFT)

PEFT techniques fine-tune only a small subset of model parameters, reducing computational cost while maintaining performance.

#### LoRA (Low-Rank Adaptation):

Injects trainable low-rank matrices into attention layers  $\rightarrow$  dramatically reduces the number of updated parameters.

#### o BitFit:

Only bias terms are fine-tuned  $\rightarrow$  extremely lightweight and effective in large language and vision models.

#### Adapters:

Small bottleneck modules inserted between transformer layers → allow fast adaptation without modifying backbone weights.

## **Pre-Trained Models for PEFT Adaptation**

#### **Grounding DINO**

- A strong vision-language model designed for open-set object detection and visual grounding.
- Built with two separate encoders (for image and text) followed by a cross-modal decoder, enabling fine-grained grounding of textual queries in images.
- Excels in complex grounding scenarios and is robust across various domains.

#### One-For-ALL (OFA)

- A **unified multimodal framework** that handles multiple tasks (e.g., captioning, grounding, VQA) within a single model.
- Trained using instruction tuning, making it highly adaptable across modalities.
- Used here for its generalization capabilities and flexibility in visual-language alignment.

## **Remote Sensing datasets**

Two vision-language remote sensing datasets have been used:

- DIOR-RSVG
- OPT-RSVG

Spatial resolution: from 0.15 m to 30 m





#### **Performance Metrics**

Pr@0.5 / Pr@0.7 / Pr@0.9: Precision at IoU thresholds 0.5, 0.7, 0.9

meanIoU: Mean Intersection over Union across all samples

cumIoU: Cumulative IoU across image-query pairs

## **Adaptation of OFA Model**



Simplified Architecture of OFA focusing on VG part

## **LoRA Placement Strategy In Grounding DINO**



## **Evaluation Of The Adapted Models (DIOR-RVSG)**

| Methods                                    | Pr@0.5 | Pr@0.7 | Pr@0.9 | meanloU | cumloU |
|--------------------------------------------|--------|--------|--------|---------|--------|
| TransVG                                    | 72.41  | 60.05  | 27.84  | 63.56   | 76.27  |
| VLTVG (ResNet-50)                          | 69.41  | 58.44  | 24.37  | 59.96   | 71.97  |
| VLTVG (ResNet-101)                         | 75.79  | 66.33  | 33.11  | 66.32   | 77.85  |
| QRNet                                      | 75.84  | 62.27  | 25.69  | 66.80   | 75.39  |
| MGVLF                                      | 76.78  | 66.74  | 35.07  | 68.04   | 78.41  |
| LPVA                                       | 82.27  | 72.25  | 39.55  | 72.35   | 85.11  |
| Grounding DINO (Vanilla)                   | 26.60  | 20.10  | 8.80   | 28.10   | 20.00  |
| Grounding DINO (FFT) {FFT=Full Fine Tuing} | 76.80  | 68.40  | 38.10  | 67.50   | 76.30  |
| Grounding DINO+LoRA (Ours)                 | 81.3   | 74.70  | 45.20  | 82.90   | 80.10  |
| OFA + Adapter (Ours)                       | 76.72  | 63.14  | 30.07  | 62.23   | 72.33  |
| OFA + BitFit (Ours)                        | 56.97  | 44.22  | 18.95  | 37.70   | 40.20  |

## **Evaluation Of The Adapted Models (OPT-RSVG)**

| Methods               | Pr@0.5 | Pr@0.7 | Pr@0.9 | meanloU | cumloU |
|-----------------------|--------|--------|--------|---------|--------|
| TransVG               | 69.96  | 54.68  | 12.75  | 59.80   | 69.31  |
| VLTVG (ResNet-50)     | 71.84  | 57.79  | 14.53  | 61.44   | 70.69  |
| VLTVG (ResNet-101)    | 73.50  | 63.11  | 16.31  | 62.48   | 73.86  |
| MGVLF                 | 72.19  | 58.86  | 15.10  | 61.51   | 71.80  |
| LPVA                  | 74.69  | 60.56  | 15.84  | 63.78   | 74.42  |
| OFA + Adapter (Ours)  | 66.38  | 46.70  | 12.86  | 41.67   | 66.39  |
| Grounding DINO (Ours) | 75.81  | 66.47  | 26.39  | 65.24   | 69.53  |

## Inference Results (adapted Grounding DINO)

**OPT-RSVG** dataset



←The storage tank on the upper left



←The storage tank on the lower left



←The harbor on the right side



←The harbor on the left side

## Inference Results (adapted Grounding DINO)

**DIOR-RSVG** dataset



←The ship on the top



←The ship at the bottom



←The airplane on the right



←The airplane on the left

## **Inference Results (OFA)**





## **Inference Results (OFA)**





## **Conclusion & Key Findings**

- PEFT techniques enable efficient adaptation of large vision-language models for remote sensing tasks.
- LoRA on Grounding DINO achieves state-of-the-art performance with minimal parameter updates.
- Adapters provide a strong balance of accuracy and efficiency when fine-tuning OFA.
- BitFit offers resource-efficient tuning but with reduced accuracy compared to other PEFT methods.
- PEFT presents a low-cost, practical solution for domain-specific visual grounding.
- Future work: explore hybrid PEFT approaches and extend to other remote sensing vision-language tasks.

## Thank you for your attention!