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Introduction 

Visual grounding is a vision-language task that localizes image regions

corresponding to textual descriptions.

Challenges & Limitations
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● Domain Gap: Natural image models don’t generalize to remote sensing

● Few Labels: Remote sensing datasets are limited

● Dense Scenes: Overlapping and small objects

● Visual Variability: Weather, lighting, and resolution changes

● Vague Text: Ambiguous or unclear queries

● High Cost: Large image sizes increase compute

● Poor Transferability: Weak generalization to new areas



Objective

Adapt general-domain vision-language models to remote sensing visual grounding

using parameter-efficient fine-tuning (PEFT), achieving high performance with

minimal computational cost.

General-Domain 

Pre-trained Model

PEFT

Remote Sensing 

Adapted Model

Remote Sensing dataset
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Parameter Efficient Fine-Tuning Techniques (PEFT)
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○ LoRA (Low-Rank Adaptation):

Injects trainable low-rank matrices into attention layers → dramatically reduces the

number of updated parameters.

○ BitFit:

Only bias terms are fine-tuned → extremely lightweight and effective in large language

and vision models.

○ Adapters:

Small bottleneck modules inserted between transformer layers → allow fast adaptation

without modifying backbone weights.

PEFT techniques fine-tune only a small subset of model parameters, reducing

computational cost while maintaining performance.



Pre-Trained Models for PEFT Adaptation

Grounding DINO 

● A strong vision-language model designed for open-set object detection and visual grounding.

● Built with two separate encoders (for image and text) followed by a cross-modal decoder, 

enabling fine-grained grounding of textual queries in images.

● Excels in complex grounding scenarios and is robust across various domains.
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One-For-ALL (OFA)

● A unified multimodal framework that handles multiple tasks (e.g., captioning, grounding, VQA) 
within a single model.

● Trained using instruction tuning, making it highly adaptable across modalities.

● Used here for its generalization capabilities and flexibility in visual-language alignment.



Remote Sensing datasets
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Train Val Test

26.991 3.829 7.500

DIOR-RSVG

38.320 samples

Train Val Test

19.500 4.895 24.477

OPT-RSVG

48.952 samples

Spatial resolution: from 0.15 m to 30 m

Two vision-language remote sensing datasets have been used: 

• DIOR-RSVG

• OPT-RSVG



Performance Metrics

7

● Pr@0.5 / Pr@0.7 / Pr@0.9: Precision at IoU thresholds 0.5, 0.7, 0.9

● meanIoU: Mean Intersection over Union across all samples

● cumIoU: Cumulative IoU across image-query pairs



Adaptation of OFA Model 
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Simplified  Architecture of OFA focusing on VG part
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LoRA Placement Strategy In Grounding DINO
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Performance (%) of LoRA-based PEFT setups on Grounding DINO 

evaluated on the DIOR-RSVG test set.
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 100 −
𝑇𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑃𝐸𝐹𝑇

𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
∙ 100

Methods Efficiency Pr@0.5 Pr@0.7 Pr@0.9 meanIoU

Image Encoder 98.66 54.10 47.30 27.80 48.80

Decoder 99.05 78.10 71.50 43.20 70.00

Image Encoder + Decoder 97.70 81.10 74.10 44.30 82.80

Encoders + Decoders 96.74 81.30 74.70 45.20 82.90



Evaluation Of The Adapted Models (DIOR-RVSG)
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Methods Pr@0.5 Pr@0.7 Pr@0.9 meanIoU cumIoU

TransVG 72.41 60.05 27.84 63.56 76.27

VLTVG (ResNet-50) 69.41 58.44 24.37 59.96 71.97

VLTVG (ResNet-101) 75.79 66.33 33.11 66.32 77.85

QRNet 75.84 62.27 25.69 66.80 75.39

MGVLF 76.78 66.74 35.07 68.04 78.41

LPVA 82.27 72.25 39.55 72.35 85.11

Grounding DINO (Vanilla)

Grounding DINO (FFT) {FFT=Full Fine Tuing}

26.60

76.80

20.10

68.40

8.80

38.10

28.10

67.50

20.00

76.30

Grounding DINO+LoRA (Ours) 81.3 74.70 45.20 82.90 80.10

OFA + Adapter (Ours)

OFA + BitFit (Ours)

76.72

56.97

63.14

44.22

30.07

18.95

62.23

37.70

72.33

40.20



Evaluation Of The Adapted Models (OPT-RSVG) 
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Methods Pr@0.5 Pr@0.7 Pr@0.9 meanIoU cumIoU

TransVG 69.96 54.68 12.75 59.80 69.31

VLTVG (ResNet-50) 71.84 57.79 14.53 61.44 70.69

VLTVG (ResNet-101) 73.50 63.11 16.31 62.48 73.86

MGVLF 72.19 58.86 15.10 61.51 71.80

LPVA 74.69 60.56 15.84 63.78 74.42

OFA + Adapter (Ours) 66.38 46.70 12.86 41.67 66.39

Grounding DINO (Ours) 75.81 66.47 26.39 65.24 69.53



Inference Results (adapted Grounding DINO) 
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OPT-RSVG dataset

The storage tank on 

the upper left

The storage tank on 

the lower left

The harbor on the 

right side
The harbor on the 

left side



Inference Results (adapted Grounding DINO) 

15

The ship on the top

The ship at the bottom

The airplane on the leftThe airplane on the right

DIOR-RSVG dataset
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Inference Results (OFA)
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Inference Results (OFA)



Conclusion & Key Findings

● PEFT techniques enable efficient adaptation of large vision-language models for 
remote sensing tasks.

● LoRA on Grounding DINO achieves state-of-the-art performance with minimal 
parameter updates.

● Adapters provide a strong balance of accuracy and efficiency when fine-tuning OFA.

● BitFit offers resource-efficient tuning but with reduced accuracy compared to other 
PEFT methods.

● PEFT presents a low-cost, practical solution for domain-specific visual grounding.

● Future work: explore hybrid PEFT approaches and extend to other remote sensing 
vision-language tasks.
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Thank you for your attention!
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