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Abstract—Wheat accounts for approximatly 20% of the
world’s caloric intake making it a vital component of global food
secuirty. Given this significance, mapping wheat fields plays a cru-
cial role in enabling various stakeholders including policymakers,
researchers, and agricultural organizations to make informed
decisions regarding food security, supply chain management,
and resource allocation. In this paper, we tackle the problem
of accurately mapping wheat fields out of satellite images by
enhancing our previous work on winter wheat segmentation by
creating an improved pipeline for processing data as well as
presenting a decade-long analysis of wheat mapping in Lebanon.
We integrate a Temporal Spatial Vision Transformer (TSViT)
with Parameter-Efficient Fine Tuning (PEFT) and a novel post-
processing pipeline based on the FOW framework. Our enhanced
pipeline addresses key challenges encountered in the previous
approach such as clustering of small agricultural parcels in a
single large field and sparse training labels. By merging wheat
segmentation with precise field boundary extraction, our method
produces geometrically coherent and semantically rich maps
enabling us to perfom in-depth analysis such as calculating the
total number of fields and tracking fields areas year over year. Ex-
tensive evaluations demonstrate improved boundary delineation
and field-level precision, establishing the framework’s potential in
operational agricultural monitoring and historical trend analysis.
This work lays the foundation for a range of critical studies
and future advancements. Building on the accurate mapping of
wheat fields, our approach provides a crucial step toward more
sophisticated agricultural analyses. Future work can extend this
methodology to improve yield estimation, crop monitoring and
broader analysis of agricultural trends.

Index Terms—crop monitoring, field deliniation, winter wheat
segmentation, PEFT, TSViT, Fields of the World (FTW)

I. INTRODUCTION

Accurate and long-term crop mapping is critical for agricul-
tural monitoring, food security assessments, and policy formu-
lation. In regions like Lebanon, where agricultural parcels vary
widely in size, traditional pixel-based segmentation methods
often lack the precise field boundaries required for operational
applications. Our previous work [1] employed a Temporal
Spatial Vision Transformer (TSViT) combined with Parameter-
Efficient Fine Tuning (PEFT) for winter wheat segmentation,
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demonstrating promising results under a weakly supervised
learning. However, limitations in spatial resolution and sparse
label availability led the model to:

• Inaccurate Field Boundaries and Out-of-Bounds Pre-
dictions : The model struggled to delineate true wheat
field boundaries, often resulting in under-segmentation
(missing parts of fields) or over-segmentation (including
non-wheat areas). This inaccuracy was particularly pro-
nounced in areas with heterogeneous land cover or where
wheat fields were adjacent to other vegetation types.

• Merging of Adjacent Wheat Fields : The model fre-
quently failed to distinguish between closely spaced
wheat fields, merging them into a single, larger field. This
issue arose due to the limited spatial resolution.

• High Noise in Segmentation Results : The segmentation
results exhibited significant noise, with scattered pixels or
small regions incorrectly classified as wheat.

This limited our abilities to generate accurate crop field
statistics. This study presents an improved processing pipeline
that incorporates a dedicated field delineation model based
on the open-source ftw-baselines [2]. This work not
only builds on our earlier methodology but also provides a
refined approach to reconcile pixel-level predictions with the
geometric realities of agricultural fields. Our contributions
include:

• A Decade-Long Analysis of Wheat Mapping in
Lebanon: A comprehensive evaluation of wheat field
trends over ten years.

• Enhanced Segmentation with Field Boundary Extrac-
tion: Improved integration of TSViT-PEFT outputs with
precise field delineation for better field-level accuracy.

• Refined Post-Processing for Improved Map Quality:
A novel post-processing technique applied to field delin-
eation results. [2]

• Addressing Previous Model Limitations: A demonstra-
tion of how the improved pipeline overcomes past chal-
lenges, enabling more reliable agricultural monitoring.

• Data-Driven Insights for Agricultural Decision-
Making: A methodology to generate actionable statistics



for policymakers and stakeholders.

II. METHOD

A. Wheat Model

Our wheat segmentation approach is based on a transformer-
based architecture that takes advantage of both temporal and
spatial cues. At its core, the model utilizes the Temporal
Spatial Vision Transformer (TSViT), which has been pre-
trained on large-scale datasets like the PASTIS dataset [5]
and subsequently fine-tuned using Parameter-Efficient Fine
Tuning (PEFT) to adapt to our specific task. Multi-temporal
Sentinel-2 imagery, processed into surface reflectance prod-
ucts, serves as input, capturing the full growing season of
winter wheat. This temporal depth enables the model to learn
distinct phenological patterns associated with wheat, while the
spatial processing capabilities of TSViT ensure that broad field
patterns are identified. The model architecture is particularly
designed to handle the variability inherent in remote sensing
data over a decade, which makes it suitable for historical trend
analysis in Lebanon.

B. Limitation of the previous approach

Despite its strong performance under controlled conditions,
the wheat model faces several challenges when applied in real-
world scenarios.

• Spatial Resolution Constraints: The primary imagery,
with a spatial resolution of 10 m from Sentinel-2, of-
ten fails to capture fine-scale details. This limitation is
especially problematic in regions with small agricultural
parcels (often less than 2 hectares), resulting in blurred
or incomplete field boundaries.

• Limited Labeled Data: With only around 30% of the
study area annotated with high-quality ground truth, the
model is restricted by sparse training data. This limited
supervision affects its ability to generalize across diverse
conditions and leads to under-segmentation or misclassi-
fication at field borders.

• Geometric Inconsistencies: Transformer-based semantic
segmentation, while effective at capturing broad crop
patterns, tends to generate over-smooth predictions. The
resulting masks may lack the crisp boundaries needed to
accurately delineate individual fields, which is critical for
operational agricultural monitoring.

C. Old Postprocessing Pipeline

Due to the aforementioned limitations, the old pipeline
exhibited several issues. The resulting shapefile contained
anomalously large polygons—one measuring up to 3907
hectares—which is unreasonably large for a wheat field in
Lebanon. Moreover, field boundaries were not clearly defined.
As shown in Figure 2, the basemap displays a wheat-classified
polygon (outlined in red) that merges multiple wheat fields into
a single polygon, thereby compromising the accuracy of the
intended statistical analyses. Additionally, Figure 1 illustrates
that the shapefile generated by the wheat mapping pipeline

contained hundreds of small polygons, representing noise in
the model’s output.

D. Field Delineation Model

To improve the spatial accuracy of our winter wheat seg-
mentation, we integrated a dedicated field delineation model
based on the open-source ftw-baselines framework [2].
This model addresses limitations in spatial resolution and geo-
metric inconsistencies by precisely extracting field boundaries.
Key aspects include:

• Architecture: A convolutional neural network (CNN)
with a U-net architecture optimized for instance segmen-
tation tasks.

• Training Data: Training is performed on the Fields
of The World (FTW) dataset, which contains approxi-
mately 1.6 million parcel boundaries across 24 countries.
Each sample includes instance and semantic segmentation
masks paired with multi-date, multispectral Sentinel-2
images (typically using image pairs from the tilling and
harvest stages).

• Baseline Challenges: Although the baseline model pro-
vides a solid foundation, it suffers from ambiguous
boundaries and noise. Our post-processing techniques are
designed to resolve these issues.

E. Enhanced Post-Processing

In this work, we enhance our segmentation framework by
introducing a novel thresholding method and integrating a
dedicated field delineation model. Below, we describe the
gradual thresholding approach, the field delineation model, an
evaluation of threshold experiments (with figures), and our
post-processing pipeline.

1) Gradual Thresholding: Traditional argmax thresholding
produces binary masks that often result in undersegmentation.
To address this, we introduce gradual thresholding.

Gradual thresholding is a technique that sets pixel values
below a defined threshold to zero while preserving the original
scores of pixels above the threshold, creating a smoother
and more informative segmentation mask. We applied the
following rules:

• Strict Threshold for Boundary Mapping: A threshold
of 0.8 is applied to boundary predictions to minimize
uncertainty and accurately extract field edges.

• Relaxed Threshold for Field Mapping: A threshold of
0.2 is used for field mapping to avoid undersegmentation
and retain more complete field information.

2) Post-Processing Pipeline: After obtaining the gradual
thresholded masks, we apply the following post-processing
steps to refine the segmentation output:

• Creation of the Basins Mask: We combine the gradual
thresholded field mask with the inverted gradual thresh-
olded boundary mask as follows:

basins mask = gradual fields×(1.0− gradual boundaries)



Fig. 1. Overview of the proposed wheat field mapping pipeline. Sentinel-2 time-series images are processed through two parallel branches: (1) a field
delineation model for field mapping and (2) a wheat classification model for wheat mapping. The outputs from both branches are then fused to generate
the final wheat field mapping results, ensuring improved spatial accuracy and refined segmentation.

Fig. 2. Large Wheat Polygon

• Watershed Segmentation: The basins mask, along with
the gradual thresholded field mask, is fed into the wa-
tershed algorithm. The negative of the field probability
scores is used to determine the basin depths, facilitating
accurate instance segmentation.

• Noise Filtering: Additional filtering is applied to elimi-
nate small, spurious parcels, thereby reducing noise and

improving overall segmentation quality.

F. Evaluation of Thresholding Experiments

We conducted experiments to assess the effects of different
threshold values on the segmentation quality. The following
figures illustrate the results:

• Boundary Confidence: Figure 3 shows the boundaries
confidence score map (a) from the baseline field delin-
eation model.

– A threshold of 0.5 (Figure 3 (b)) results in high
uncertainty along the boundaries, leading to many
fields being omitted.

– In contrast, thresholding at 0.8 (Figure 3 (c)) retains
most fields and yields better segmentation quality.

• Field Confidence: Figure 3 (e) displays the field confi-
dence score map.

– When thresholded at 0.5 (Figure 3 (f)), high uncer-
tainty causes several fields to be removed.

– Thresholding at 0.2 (Figure 3 (g)) preserves most
fields and results in improved segmentation.

• Comparison with Old Thresholding: Figure 3 (e)
illustrates the old approach using argmax, which led
to undersegmented fields. In comparison, our gradual



thresholding method (see Figure 3 (h) produces more
accurate segmentation with many distinct fields.

G. Pipeline

1) Automated Sentinel-2 Fetching Pipeline: We imple-
mented an automated data fetching pipeline that utilizes the
Sentinel-Hub API to request data from the Copernicus Data
Space Ecosystem (CDSE). This Sentinel-2 fetching pipeline
served a dual purpose: it was integrated into the full pro-
cessing pipeline and was also used to generate training data.
Specifically, we fetched five years of data for an Area of
Interest (AOI) in Baalbek, Lebanon, and labeled them in-
house. This dataset became the foundational labeled dataset
for Lebanon. We then split this dataset to fine-tune the TSViT
model, as described in our work. Furthermore, this pipeline
will be employed for future tasks, such as automating live crop
health monitoring by retrieving current and future imagery.

2) Pre-processing: Both the wheat model and the field
delineation model require preprocessing steps, as the raw
satellite images cannot be fed directly into the models. For
the wheat model, we first read the satellite images for the
target year, starting with months 11 and 12 of the previous
year, followed by months 1, 2, 3, 4, 5, 6, and 7 of the target
year. We then extract the necessary spectral bands: 1, 2, 3, 4,
5, 6, 7, 8, 11, and 12 (0-indexing). Each image is normalized
using a predefined mean and standard deviation, ensuring that
the input scale remains consistent, which helps improve model
performance. After normalization, we concatenate the images
into a tensor of shape (1,1,11,H,W), where:

• 1 is the batch dimension
• 1 is the time dimension (multiple months are stacked)
• 11 corresponds to 10 spectral bands plus 1 additional

channel for time encoding
• H and W represent the image height and width

Next, we iterate over the stacked tensor, rearrange its dimen-
sions, and split it into 24×24 pixel patches before feeding
them into the model. The model’s predictions are then post-
processed into a class-wise segmentation map, where 1 repre-
sents a wheat pixel and 0 represents a non-wheat pixel. Finally,
we save the segmented image as a new TIFF file.

The field model follows a different preprocessing approach.
We first read the satellite images for the target year and
the following year, selecting month 11 from the target year
and month 6 from the following year. We then extract the
necessary spectral bands: 2, 3, 4, and 8. The two selected time
windows are stacked together. Each image is normalized by
dividing pixel values by 3000. The images are then cropped
into 256×256 pixel chunks, with any leftover areas padded
with 0. The model’s predictions are processed as described
earlier, using thresholding, and the results are saved as a new
TIFF file

3) Post-processing: We now iterate over the saved TIFF
files generated by the wheat model and apply a post-processing
routine. This routine utilizes the watershed algorithm to create
an instance mask from the raster image. The instance mask
is then passed to a noise filtering script, which removes

polygons below a defined size threshold. Following this, we
fill any gaps or holes within the polygons, and subsequently
simplify and regularize the remaining polygons. The field
model undergoes a similar post-processing routine, but without
the noise filtering and regularization steps

4) Result: The two shapefiles are merged using the fol-
lowing criteria: any field polygon that intersects with a wheat
polygon is appended to a final shapefile, designated as type
”wheatfields.” To account for instances where the wheat model
identifies wheat but the field model does not detect a cor-
responding field, we also append the geometric difference
between the wheat and field polygons to the final shapefile
esignated as type ”maybewheatfields.”. The resulting shapefile
accurately delineates wheat fields.

III. STATISTICAL RESULTS

To understand the spatial and temporal dynamics of wheat
cultivation over the past decade, we analyzed changes in wheat
and non-wheat areas, focusing on expansion, abandonment,
and land-use transitions. The table I shows the change of

Year Total Wheat Area Non Wheat Area
2016 177.0 10032.1
2017 176.8 10032.2
2018 177.6 10031.7
2019 254.4 9955.4
2020 144.4 10064.6
2021 192.7 10016.6
2022 187.9 10021.2
2023 224.7 9984.6
2024 139.1 10069.5

TABLE I
CHANGE OF AREA IN km2 OVER THE YEARS.

wheat are in km2 over the last 10 years. We can see how
wheat increase for example from 2022 till 2023 while the
most significant growth occurring between 2018 and 2019.
Also the huge decrease between 2019 and 2020 showes the
potential effect of the severe financial crisis that Lebanon
suffered from the year of 2019. Table II shows the area
of intersection between two consecative years and between
two non-consecative years skipping one year in between. The
consecative intersection tracks the continous land use changes.
So farmers that planed wheat then a non-wheat fratile then
a wheat one within adjacent years. Skipping intersections
captures non-consecutive changes like wheat abandoned for
a few year then reclaimed. Upon inspecting the results, we

Year A Year B Consecative In-
tersection

Year B Skipping Inter-
section

2016 2017 51.7 2018 87.2
2017 2018 48.6 2019 93.5
2018 2019 60.0 2020 70.1
2019 2020 47.0 2021 92.6
2020 2021 43.6 2022 73.7
2021 2022 59.9 2023 97.3
2022 2023 74.8 2024 72.3
2023 2024 54.2 – –

TABLE II
CONSECUTIVE VS. SKIPPING INTERSECTIONS WHEAT AREA IN km2 OVER

CONSECATIVE YEARS



Fig. 3. Comparison of boundary and field segmentation results under different thresholding strategies. Figures (a)–(c) show boundary score maps and their
thresholded outputs at 0.5 and 0.8, respectively, while (d) illustrates the traditional argmax approach. Figures (e)–(g) present the field score map and its
thresholded versions at 0.5 and 0.2, and (h) demonstrates the final segmentation obtained using our gradual thresholding method.

observed that the intersection between skipped years is consis-
tently greater than the intersection between consecutive years.
This suggests a pattern of alternating wheat land abandonment
in Lebanese agriculture, a practice known as crop rotation.
We will examine this phenomenon in detail while presenting
the Sankey diagram. Crop rotation is a strategic agricultural
technique where farmers systematically alternate the types of
crops planted in a field over successive growing seasons. This
practice offers several key benefits like soil fertility, decreasing
pest amounts and disease managemnt.

While tables presented above provides a numerical break-
down of annual wheat area changes, the Sankey diagram
in Figure 4 complements this by illustrating the movement
of land between different states (wheat to non-wheat and
vice versa). This combined approach offers both quantitative
accuracy and visual clarity

To better visualize transitions, a Sankey diagram was gener-
ated, illustrating the flow of land between different states over
time. Let us examine two specific flows to better understand
the results

• The white upper pillers represent the non-wheat area of
a year

• The white lower pillers represent the wheat area of a year
• The red flow from a lower piller to an upper piller

represents the abonded wheat areas from a year to a year
• The blue flow from an upper piller to a down piller

represents new wheat areas from a year to a year
• The green flow from a lower piller to a lower piller is

the wheat areas that stayed wheat from a year to a year
• The black flow from an upper piller to an upper piller is

the non wheat area from a year to a year
The Sankey diagram reveals distinct patterns in wheat cultiva-
tion trends over the past decade, particularly in the abandon-

ment of wheat fields and the introduction of new wheat areas.
A notable observation is the periodic increase in abandoned
wheat areas, represented by the red flow, occurring approx-
imately every three years (2016 → 2019 → 2023 − 2024).
This suggests that farmers may be gradually reducing wheat
cultivation due to factors such as soil degradation, water
scarcity, or shifting economic condition. The sharp increase in
wheat abandonment during 2023-2024 coincides with the war
on Lebanon, especially the war threats on the Bekaa Valley,
the top wheat-producing region in the country Additionally, the
blue flow, which represents new wheat areas, follows a cyclical
pattern of expansion and contraction approximately every two
years. This trend suggests that farmers may be implementing
a crop rotation system, where wheat cultivation alternates
with other crops or fallow periods to preserve soil health
and optimize yields. Such a practice aligns with common
agricultural strategies aimed at replenishing soil nutrients and
mitigating pest infestations

IV. FUTURE WORK

As you may have noticed, we have not yet validated our
statistics due to resource limitations. According to the USDA
[3], the yield production of wheat in Lebanon for 2023 is 3.5
tons per hectare. Conversely, another study by Our World in
Data [4] reports a yield of 2.5 tons per hectare for the same
year. Other than that we can’t simply state that the yield is
2.5 tons per hectare and multiply it by the area in hectares
we generated, since our model retrieves all types of wheat
breeds and land types without distinguishing between them.
It is essential to note the presence of two distinct field types:
rainfed fields and watershed agriculture fields

• Rainfed Fields: These rely solely on natural rainfall for
irrigation. Farmers do not manually water these lands,



Fig. 4. Annual Sankey Diagram

making their yield highly dependent on seasonal precip-
itation patterns

• Watershed Agriculture Fields: These employ automated
irrigation systems, providing farmers with greater control
over water supply and resulting in more consistent yields

Furthermore, we must distinguish between differenet wheat
breeds. In lebanon we have maily two breeds durum and soft
wheat varieties, each with its own yield characteristics. Our
model currently detects all wheat fields without differentiating
between these types and irrigation methods. Consequently,
we cannot accurately determine the tons per area from our
statistics, as each field’s yield varies depending on its type
and management practices. This highlights a new research
challenge: how to detect and label rainfed and watershed fields
using remote sensing alone, and how to identify and distin-
guish between Durum and soft wheat varieties. Incorporating
these labels would enable us to report more precise yield
estimations. For example, we could state that we detected
x1 km2 of soft wheat, which yields y1 tons, and x2 km2

of Durum wheat, which yields y2 tons. This would allow us
to provide accurate local annual wheat production reports for
Lebanon.

In our next research, we will try to fill the gap between our
current model’s output and the accurate, detailed agricultural
statistics needed for effective policy and resource management
in Lebanon. We aim to develop methodologies that can auto-
matically differentiate between rainfed and watershed fields, as
well as identify and classify Durum and soft wheat varieties,
utilizing remote sensing data and advanced machine learning
techniques. This will allow for more precise yield estimations
and contribute to a deeper understanding of Lebanon’s agri-
cultural landscape.
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