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Abstract: Parameter Efficient Fine Tuning (PEFT) techniques have recently experienced significant 1

growth and have been extensively employed to adapt large vision and language models to various 2

domains, enabling satisfactory model performance with minimal computational needs. Despite 3

these advances, more research has yet to delve into potential PEFT applications in real-life scenarios, 4

particularly in the critical domains of remote sensing and crop monitoring. In the realm of crop 5

monitoring, a key challenge persists in addressing the intricacies of cross-regional and cross-year crop 6

type recognition. The diversity of climates across different regions and the need for comprehensive 7

large-scale datasets have posed significant obstacles to accurately identify crop types across varying 8

geographic locations and changing growing seasons. This study seeks to bridge this gap by com- 9

prehensively exploring the feasibility of cross-area and cross-year out-of-distribution generalization 10

using the State-of-the-Art (SOTA) wheat crop monitoring model. The aim of this work is to explore 11

efficient fine-tuning approaches for crop monitoring. Specifically, we focus on adapting the SOTA 12

TSViT model, recently proposed in CVPR 2023, to address winter wheat field segmentation, a critical 13

task for crop monitoring and food security, especially following the Ukrainian conflict, given the 14

economic importance of wheat as a staple and cash crop in various regions. This adaptation process 15

involves integrating different PEFT techniques, including BigFit, LoRA, Adaptformer, and prompt 16

tuning, each designed to streamline the fine-tuning process and ensure efficient parameter utilization. 17

Using PEFT techniques, we achieved notable results comparable to those achieved using full fine- 18

tuning methods while training only a mere 0.7% parameters of the entire TSViT architecture. More 19

importantly, we achieved the claimed performance using a limited subset of remotely labeled data. 20

The in-house labeled data-set, referred to as the Lebanese Wheat dataset, comprises high-quality 21

annotated polygons for wheat and non-wheat classes for the study area in Beqaa, Lebanon, with 22

a total surface of 170 km², over five consecutive years from 2016 to 2020. Using a time series of 23

multispectral Sentinel-2 images, our model achieved a 84% F1-score when evaluated on the test set, 24

shedding light on the ability of PEFT to drive accurate and efficient crop monitoring, designed mainly 25

for developing countries characterized by limited data availability. Our code is publicly available at 26

this Repo. 27

Keywords: Remote sensing; crop monitoring; PEFT; transformers; crop type recognition 28

1. Introduction 29

Foundation models, mostly based on transformer architecture, have demonstrated 30

impressive success in many domains and benchmarks. However, the exponential increase 31

in the number of parameters makes training these models extremely expensive and chal- 32

lenging. This motivated researchers to propose more efficient approaches to fine-tune and 33

adapt these models to downstream tasks. 34

Parameter-Efficient FineTuning (PEFT) encompasses a family of approaches that keep 35

most of the parameters of pre-trained models frozen and train only part or additional 36

parameters. PEFT approaches have been extensively investigated and used in the NLP 37
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Figure 1. Large transfomer-based model PEFT-ing for down-stream task: TSViT model is pre-trained
on PASTIS dataset and then multiple tuning techniques are applied for winter wheat crop detection
using Beqaa-Lebanon and Munich 480 datasets.

community and recently in the vision community. However, most of the work still considers 38

general academic benchmarks and classical tasks. 39

In this work, we explore efficient fine-tuning approaches for crop monitoring. Specifi- 40

cally, we consider the recent state-of-the-art (SoTA) TSViT model that relies on time series 41

of satellite images. Rather than fully tuning all model parameters, we fine-tune only a 42

small number, using different techniques such as bias tuning, Adapters and LOw-RAnk 43

adaptation as shown in Figure 1. This paper contribution is two-folds: 44

• We explore different PEFT techniques to efficiently adapt pre-trained models for crop 45

type segmentation, and identify the most important parameters for each PEFT method 46

to achieve the best performance. 47

• We experiment with different datasets from different countries like Germany and 48

Lebanon and consider a realistic and challenging setup where we test the model on 49

different year and regions. 50

2. Framework 51

In this work, we focus on efficient fine tuning of large transformer-based model for 52

winter wheat crop segmentation, as shown in Figure 1. The Temporal Spatial Vision 53

Transformer (TSViT) [1] is a recent state-of-the-art ision transformer that achieved SOTA 54

for satellite image time series in the PASTIS dataset [2]. The model consists of a temporal 55

transformer followed by a spatial transformer. The architecture is based on common 56

practices used for video processing, where the model used temporal encoding before 57

spatial encoding. Given its state-of-the-art performance in crop field segmentation, we 58

choose TSViT as the main model upon which we conduct our experiments and comparisons. 59

2.1. PEFT techniques 60

To avoid training all model parameters, especially large transformer models, great 61

effort has been put into promoting efficient fine-tuning approaches [3]. Most of this 62

work is focused on Large-Language Models (LLMs) [4–8]. Some effort has been made to 63

address vision model efficient tuning [9,10], however, very little work has considered PEFT 64

techniques for remote sensing satellite images applications [11]. 65

Parameter Efficient Fine Tuning (PEFT) techniques focus on training the least size of 66

parameters in the most efficient way possible. These techniques achieve results equivalent 67

to or better than full fine-tuning, reducing the cost of both training and storing the model 68

with minimal loss (and sometimes non). 69
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In our work, we investigate the effectiveness of the following PEFT techniques for the 70

task of crop field segmentation given a time series of Sentinel-2 images: (i) BitFit, (ii) Visual 71

Prompt Tuning, (iii) LoRA, (iv) Adapter. 72

BitFit [12] is a technique that focuses on training the Bias only, rather than the whole 73

model. BitFit requires the least number of trainable parameters among other PEFT methods 74

(note that head tuning requires fewer trainable parameters than BitFit). 75

Visual Prompt Tuning (VPT) [13] is a PEFT technique that adds additional prompt 76

parameters concatenated to the input of the transformer that can help the model under- 77

stand the different tasks and achieve better results. This prompt can be added to the first 78

transformer encoder layer only, which is called Shallow prompt tuning, or added to each 79

transformer encoder layer, which is known as Deep prompt Tuning. Furthermore, given 80

that the TSViT architecture is uniquely characterized by the presence of two transformers, 81

one focused on temporal information followed by another on spatial data, it opened up an 82

opportunity to experiment with dual prompts. 83

LoRA [6] aims to train a smaller coinciding model with a low intrinsic rank r. Low- 84

Rank Adaption (LoRA) freezes the original weight matrix W0 and trains a separate update 85

matrix that is formed by the product of two separate matrices A and B. In our LoRA 86

experiments, we investigate the effect of the following hyperparameters of the additional 87

modules: (i) rt: rank of the temporal transformer LoRA layers, (ii) rs: rank of the spatial 88

transformer LoRA layers, and (iii) rr: rank of the rest of Lora layers. 89

Adapter [14] tuning is a method that aims to achieve efficient model adaptation by 90

introducing two additional layers in the feed-forward steps. It can be added in series or in 91

parallel with the feed forward layer. 92

Given the dual nature of the TSViT, our attention was primarily divided between two 93

critical hyperparameters: the spatial adapter dimension and the temporal spatial dimension. 94

The former pertains to the scale and complexity of spatial data processing, while the latter 95

concerns the interpretation of temporal data. These dimensions essentially determine the 96

granularity and depth of information processing within the transformer. 97

2.2. Baselines 98

Before the analytical comparison of our results, it is necessary to establish clear base- 99

lines. These baselines will serve as foundational benchmarks against PEFT. To ensure a 100

logical comparison, we have incorporated a blend of traditional and specialized fine-tuning 101

techniques. The techniques selected for our baseline are as follows: 102

• Training from Scratch: In this approach, the TSViT model was trained without using 103

any prior weights. The goal of this strategy was to discern the innate potential of the 104

TSViT architecture without the influence of fine-tuning. 105

• Full Fine-Tuning: Given a pre-trained model, we apply transfer learning by training 106

all model parameters on a new data set using a low learning rate. It represents an 107

aspirational benchmark: any PEFT technique that can perform as well or better than 108

full fine-tuning would be deemed successful. 109

• Head Fine-Tuning: This technique introduces a layer to the front of the model, which 110

then undergoes training. It is minimalist, targeting only the initial aspects of the 111

model and setting the minimal performance expectation. Any PEFT technique that 112

underperforms compared to this baseline would need re-evaluation. 113

• Token Tuning: TSViT stands out due to its reliance on temporal tokens for segmen- 114

tation. This intrinsic characteristic opens up the possibility of a unique fine-tuning 115

technique: Token Tuning. By manipulating the temporal tokens, one can effectively 116

alter the output classes. It is a nuanced method, specifically for the TSViT model. 117

2.3. Datasets 118

We used two datasets in this study: (i) Beqaa-Lebanon that we prepared in-house for 119

the scope of this work and (ii) Munich 480 dataset. 120
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Beqaa-Lebanon data set was labeled for this project, where we annotated a weakly 121

supervised data set of approximately 2,000 wheat parcels per year from 2016 to 2019. We 122

then labeled an equivalent area of negative samples (non-wheat areas) per year to balance 123

our data set. The total annotated area per year (from 2016 to 2019) is 170 km2. Finally, we 124

thouroughly annotated the year 2020 as a test set of surface area equal to 981 km2, with 125

about 16% positive samples (wheat). In all our experiments, we used the annotated area 126

of years 2016 to 2019 as our training set. We also split year 2020 into four tiles, where 127

one of them was used for validation purpose, and the remaining three as a test set. All 128

experimental results are based on the test set. 129

The study area is divided into 24 ∗ 24 tiles as in the paper [1], which means that each 130

input contains T*24*24*C, where T is the number of images that make up a time series of 131

Sentinel-2 images for each wheat season, and C is the number of Sentinel-2 bands used. We 132

set T = 9, corresponding to a series of images from November to July, and C = 10. 133

Munich 480 dataset [15] covers an area of 102 km * 42 km in Munich, Germany. It 134

consists of 30 images per year split into 48 ∗ 48 tiles made of all 13 Sentinel-2 bands and 135

covering 27 different crop classes. We splitted images into 24 ∗ 24 tiles and used 60%-20%- 136

20% ratio for train-validation-test sets distribution. 137

3. Experimental Results 138

In this section, we will discuss the details of the implementation of the model, as well 139

as the process of training or tuning the model using different techniques and baselines. 140

In all our experiments, we used Adam optimizer, trained each model for 20 epochs, set 141

batch size to 16 and kept a constant learning rate throughout the entire training process. 142

All experiments were implemented using the Pytorch library on a single Nvidia GeForce 143

TiTan XP 12GB GPU. 144

In the following subsections, we discuss and compare the results of different PEFT 145

techniques using the Beqaa-Lebanon dataset. For comparison, F1-score is used as our main 146

metric. F1-score measures a model’s accuracy by combining precision and recall scores. 147

Cross-validation was performed after each epoch, and the model with the best validation 148

score was saved. As shown in Figure 2, the predictions of our best model achieve high 149

F1-scores, in the order of 85%. 150

Method Trainable Parameters (%) F1-score

BitFit-Partial Bias 0.29 83.0
BitFit-Full Bias 0.54 83.9
VPT 0.29 83.5
LoRA 5.87 84.76
AdaptFormer 1.09 85.0

Head tune 0.05 56.0
Full finetuning 100 84.3

Table 1. Performance of various PEFT techniques and the baselines in term of F1-score and percentage
of trainable parameters on Beqaa-Lebanon dataset. Adaptformer offers the best performance (even
better than full fine-tuning) with an F1-score of 85%.

3.1. BitFit and LoRA 151

BitFit is the simplest PEFT technique but showed promising results. As shown in 152

Table 1, partial- and full-bias PEFT-ing of the TSVit model on the Beqaa-Lebanon dataset 153

can achieve an F1 score of 83% and 83. 9%, respectively. These results are comparable to 154

full fine-tuning while only training 0.29% and 0.54% of the model parameters, respectively. 155

For LoRA, we conducted four series of experiments to assess the influence of hyper- 156

parameters discussed in Section 2.1. The best results are obtained when all intrinsic ranks 157

are equal. This observation is best explained by the fact that the original and downstream 158
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Figure 2. Best model predictions and F1-scores for some tiles, in addition to the ground truth.

Temporal Spatial External Deep F1-Score(%)
Dimension Dimension Prompt Prompt

Series 1 4 4 ✘ ✓ 82.12
8 8 ✘ ✓ 82.88
16 16 ✘ ✓ 82.35

Series 2 4 4 ✓ ✓ 82.16
8 8 ✓ ✓ 82.75

16 16 ✓ ✓ 83.50
Series 3 8 8 ✓ ✘ 81.36

4 4 ✓ ✘ 79.00
Series 4 8 0 ✓ ✓ 83.50

0 8 ✓ ✓ 69.73
Table 2. Visual Prompt Tuning Experimentation Table

tasks are the same here (crop-field segmentation), and thus the LoRA training should be 159

balanced to match the flow of the model. The best results of LoRA tuning can be reached 160

by balancing all modules’ ranks where the highest F1-score of 84.9% is achieved with 161

rt = rs = rr = 4. Detailed results are not included here for space limitations. 162

3.2. VPT and Adaptformer 163

Visual Prompt Tuning experiments delves further into the impact of various con- 164

figurations. We conducted four series of experiments to assess the influence of different 165

configuration settings, as shown in Table2. 166

• Series 1: External prompt is not used and the model is deep. The F1 score hovers 167

around the low 82% range, regardless of the temporal and spatial dimensions. 168

• Series 2: We used an external deep prompt that shows outstanding performance, 169

where the highest F1-score of 83.5% is achieved at dimensions 16 ∗ 16. 170

• Series 3: We used an external shallow prompt and witnessed a dip in performance, 171

with F1 scores of 81.36% and 79% for dimensions 8 ∗ 8 and 4 ∗ 4, respectively. This 172
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Figure 3. F1-scores results upon varying AdapterFromer’s spatial and temporal dimensions on
Beqaa-Lebanon dataset.

suggests that although the shallow prompt might not be as effective as the deep 173

prompt, it still outperforms head tuning, as shown in Table 1. 174

• Series 4: We experiment here with setting one dimension (temporal and spatial) at a 175

time to zero while using an external deep prompt. An F1-score of 83.5% is achieved 176

when the temporal dimension is set to 8 and the spatial dimension is equal to zero, 177

but the performance drops significantly to 69.73% the other way around (temporal set 178

to zero). 179

Series 1 and 2 showed that using the prompt inside the transformer’s Q and K matri- 180

ces only, which was proposed in the literature, does not have any advantage over adding 181

it outside the transformer encoder layer. On the other hand, Series 2 and 3 showed that 182

deep prompts lead to better performance. Series 4 concludes that prompt tuning of only 183

the temporal transformer is sufficient, and it is safe not to tune the spatial transformer. 184

185

Similarly to VPT, we test the influence of the Adaptformer spatial and temporal di- 186

mensions as shown in Figure 3. Spatial adapters showed negligible importance compared 187

to temporal ones. A 84.5% F1-score is attained when we set the temporal dimension to 188

8 and ignore the spatial dimension. On the contrary, we witness a 4.6% drop in F1-score 189

when doing the opposite (setting the temporal dimension to zero). AdaptFormer revealed 190

the best performance among all PEFT techniques and the baselines with a F1-score of 84.9% 191

when the adapter temporal and spatial dimensions were equal to 8. 192

193

We finally note that LoRA and Adaptformer were the only PEFT techniques that 194

provided better F1-scores (84.76% and 85%, respectively) than full fining of the model 195

while training only less than 1% of the model parameters. Also, as tabulated in Table 1, 196

both Bitfit and VPT provided comparable but fewer results than full fine-tuning, while 197

still having at least 27% better F1-score than the simple Head-tuning baseline. This shows 198

that all considered PEFT techniques, when tuned carefully, are capable of reaching 98% of 199

fully trained model performance. Furthermore, we investigate the effect of varying the 200
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learning rate in all PEFT methods. These experiments will not be shown here because of 201

space limitations. 202

In summary, following an extensive set of experiments, AdaptFormer model produced 203

an 85% F1-score on the Beqaa-Lebanon test set with only 1.09% of the model parameters. 204

3.3. Munich 480 dataset 205

To further support our findings, we apply the following five training techniques 206

in the Munich 480 dataset: (i) Head Tune, (ii) Partial Token Tune, (iii) Token Tune, (iv) 207

AdaptFormer and (v) Training from scratch as shown in Table 3. 208

Partial and full token tuning provided better F1 scores (67.4% and 75.2%, respectively) 209

than head tuning (63.9%). Adaptformer outperforms partial and full token tuning tech- 210

niques with a margin greater than 10%. Moreover, Adaptformer only lays 4% behind full 211

model training while only training 0.8%of the model parameters. 212

Training Technique F1-score (%) IoU (%) Trainable Parameters (%)
AdaptFormer 84.7 74.3 0.808

Head Tune 63.9 48.4 0.079
Partial Token Tune 67.4 52.1 0.061

Full Token Tune 75.2 61.3 0.208
Training from scratch 88.9 80.7 100

Table 3. F1-scores of different investigated training scenarios in the Munich 480 dataset.

4. Conclusion 213

In this paper, we empirically studied the use of the parameter-efficient fine tuning 214

(PEFT) technique to adapt the state-of-the-art TSViT model in two different countries, 215

namely Lebanon and Germany. We showed that PEFT methods can achieve accurate results 216

with a size of about 1% of the model parameters. Our investigation provided several im- 217

portant findings on the effectiveness of applying parameter-efficient fine-tuning strategies 218

in TSViT for winter wheat segmentation, where we were able to achieve an F1-score of 85% 219

while training only 0.72% parameters. We analyzed each PEFT method’s hyperparameters, 220

and pointed out the best settings to achieve the highest possible individual performance. 221
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