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Abstract

Buildings classification using satellite images is becoming more important for several applications such as damage assessment,
resource allocation, and population estimation. We focus, in this work, on buildings damage assessment (BDA) and buildings type
classification (BTC) of residential and non-residential buildings. We propose to rely solely on RGB satellite images and follow
a 2-stage deep learning-based approach, where first, buildings’ footprints are extracted using a semantic segmentation model,
followed by classification of the cropped images. Due to the lack of an appropriate dataset for the residential/non-residential
building classification, we introduce a new dataset of high-resolution satellite images. We conduct extensive experiments to select
the best hyper-parameters, model architecture, and training paradigm, and we propose a new transfer learning-based approach that
outperforms classical methods. Finally, we validate the proposed approach on two applications showing excellent accuracy and
F1-score metrics.
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1. Introduction

Buildings classification is vital for many applications, such
as buildings damage assessment (BDA) and buildings type clas-
sification (BTC). Urban areas are constantly struck by man-
made and/or natural disasters, such as wars, tornadoes, and
earthquakes, resulting in large-scale buildings and urban infras-
tructure destruction. In the early reconstruction phase, dam-
age assessment is conducted manually using crucial informa-
tion about the area, amount, rate, and type of damage. In addi-
tion, buildings type classification (e.g., residential/non-residential)
pave the way for many real-world applications such as popula-
tion estimation and resource allocation.

For these purposes, remote sensing techniques can play an
important role, mainly due to their wide availability at relatively
low cost, wide field of view, and fast response capacities. Using
deep learning for building classification can speed up the pro-
cess by reducing human intervention and saving considerable
time and cost. Indeed, we witnessed in past years a rapid devel-
opment in the field of deep learning and its applications in earth
observation, remote sensing, and computer vision fields [1].

Contrary to other work that proposes to tackle such task
by adopting one model for semantic segmentation with many
classes [2, 3], here we follow a 2-stage approach where we dis-
entangle the semantic segmentation from the classification. In
a nutshell, a semantic segmentation model takes an input RGB
image and predicts buildings’ masks (i.e., stage 1). In the sec-
ond stage, buildings are cropped from the original image and
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fed to a classification model to predict the class of each build-
ing. In addition, we propose to use only RGB satellite images,
which is more efficient than using additional other modalities.

This paper focuses on the second classification stage and
conducts extensive experiments to find the best hyper-parameter,
training paradigms, and model architecture for the underlying
task. Moreover, we propose a new transfer learning paradigm
that extends the classical 2-stage approach (i.e., pre-training
then fine-tuning) by an additional stage that makes the model’s
layers more consistent and specific to the task, and we show
that this outperforms the classical approach. We validate the
proposed approach on two main tasks (i.e., BDA and BTC),
showing excellent performance in terms of accuracy and F1-
score metrics. Finally, we propose a new dataset for BTC. To
avoid redundancy, we optimized the hyperparameters and the
training paradigm for BDA while we focused on the architec-
ture for BTC. The list of contributions are the following:

• We propose to use only RGB satellite images for build-
ings classification. We validate the approach on two main
tasks; Buildings type classification (BTC) and Buildings
damage assessment (BDA).

• We propose a new dataset for BTC.

• We conduct extensive experiments to choose the best hy-
perparameters, training paradigm, and model architec-
ture.

• We propose a new transfer learning paradigm that outper-
forms the classical 2-stage approach.
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The rest of this paper is organized as follows: Section 2
reviews some of the related works. Section 3 presents a brief
background and details the methodology adopted in this work.
In Sections 4 and 5, we validate the proposed approach us-
ing Building Damage Assessment and Building Damage As-
sessment applications, respectively, and discuss the proposed
dataset. Finally, Section 6 concludes this manuscript.

2. Related Work

2.1. Buildings Damage Assessment

A vision-based approach for detecting cracks on concrete
images is discussed in [4] using deep learning techniques. Based
on Convolution Neural Network (CNN), the idea is to deter-
mine cracks in a specific zone such as a building, especially in
the roof, and make decisions that help classify the building as
either damaged or not. Authors in [5] assess the impact of the
combined use of different resolution satellite images on improv-
ing classification accuracy of damaged buildings using CNN. In
[6], the proposed method also detects Flooded/Damaged build-
ings from satellite imagery of an area affected by a hurricane.
The authors prepared their dataset from online sources and ap-
plied several pre-processing steps before the training phase on
the TensorFlow framework. The study in [7] proposes an al-
gorithm for building damage detection from post-event aerial
imagery, using a data expansion Single Shot multi-box Detec-
tor (SSD) algorithm for a small data set of Hurricane Sandy.
The proposed algorithm relies on Feed Forward Neural Net-
work (FFNN) and uses VGG-16 [8] as the primary network to
extract feature information. In [9], the authors use CNN on
a small set of candidates damaged buildings to reduce needed
processing time. Deep learning is also used in [10] to improve
the detection of rooftop hail damage. One CNN classifier is
trained from scratch, while the second classifier relies on the
set features from a pre-trained network. In addition, different
input size images were tested to check the best one.

Moreover, researchers from various disciplines such as civil
engineering, infrastructure, and mechanical engineering devel-
oped CNN models to detect different types of damage. The
authors in [11] and [12] generate damage features’ map using
data extracted from sensors. In [11], authors provide structural
damage localization with good accuracy using both noise-free
and noisy datasets. In [12], as the variation of the temperature
alters the structural model parameters, a damage detection tech-
nique is proposed to consider both uncertainties and varying
temperatures. It is developed on the basis of Sparse Bayesian
Learning (SBL). An application for an unsupervised learning
approach was presented in [13] where the authors propose a
transfer learning approach to use a source network trained on
a labeled dataset to be able to train the target network on an
unlabeled dataset.

In all previous work in the literature related to damaged
buildings, the optimization of the hyper-parameters for the deep
learning model was barely investigated.

2.2. Buildings Type Classification
In [14], authors use an ensemble of machine learning mod-

els to classify buildings as sprayable and not-sprayable based
on buildings characteristics such as size, shape, and proximity
to neighboring features. Similarly, in [15], authors use classical
machine learning approaches to predict if the building is resi-
dential or not based on several input variables (stored in shape-
files, CSV ...).

Work presented in [16] propose to classify buildings type
using geospatial data (e.g., point-of-interest (POI) data, build-
ing footprints, land use polygons, and roads) based on NLP and
ratio-based techniques. In [17], an iterative clustering method
to classify buildings based on spatiotemporal data (e.g., popula-
tion density and people interaction) is introduced. Random For-
est Classifier is used in [18] to classify buildings’ footprint from
different data sources (e.g., topographic raster maps, cadastral
databases, or digital landscape models). Authors in [19] use
object-Based Image Analysis (OBIA) and machine learning meth-
ods to extract and classify buildings from Airborne Laser Scan-
ner (ALS). Gaussian finite mixture model is proposed in [20] to
classify buildings based on several metrics extracted from high-
resolution satellite images. Finally, [21] combines street view
with satellite images to classify buildings using CNN models.

To the best of our knowledge, no method in the literature is
solely based on RGB aerial images to classify buildings types.

3. Methodology

The primary motivation behind adopting the 2-stages ap-
proach is to fragment the main problem into two more straight-
forward tasks: semantic segmentation and image classification.
This approach helps to leverage the recent advances in those
two domains to solve the underlying task. In addition, besides
being more efficient and cheaper, we argue that RGB images
are enough to classify buildings, as this can be done relatively
easily by humans.

In this section, we will focus on the second stage, which is
buildings classification. In a nutshell, the model takes an RGB
image of a building cropped using the predicted segmentation
mask from the first stage and output the class of the building,
either damaged or not and either residential or not.

3.1. Loss Function
Multiple loss functions exist and can be used during train-

ing. In this work, we focus on two of the widely used losses in
order to compare their performance and choose the appropriate
one for the task: (i) Cross-Entropy loss and (ii) Focal loss [22].

Cross-Entropy loss is defined in Equation 1, where ti and si

are, respectively, the ground-truth and the score for each class i
in the universe of classes C.

CE = −

C∑
i

tilog(si) (1)

In our case, we are dealing with a binary classification which
means that C = 2, and this is referred to as the Binary Cross
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Figure 1: Architecture of the adopted CNN network model for BDA application.

Entropy defined in Equation 2. t1 and s1 are, respectively, the
ground-truth and the score for class C1.

BCE = −

C=2∑
i=1

tilog(si) = −t1log(s1) − (1 − t1)log(1 − s1) (2)

Focal loss [22] weighs the contribution of each sample to
the loss based on the classification error. If a sample is classified
correctly by the CNN, its contribution to the loss model should
decrease. With this strategy, focal loss solves the problem of
hard labels and plays a vital role in imbalanced classes dataset.
Binary focal loss is described in Equation 3, where (1− si) γ is a
modulating factor to reduce the influence of correctly classified
samples in the loss and γ ≥ 0 is referred to as the focusing
parameter. With γ = 0, focal loss is reduced to binary cross
entropy.

FL = −

C=2∑
i=1

(1 − si)γtilog(si) (3)

3.2. Optimizer
During CNN training, the role of the optimizer is to update

the weight parameters to minimize the loss function. Multiple
optimizers are suggested in the literature, such as Momentum,
Regular Gradient Descent (RGD), Stochastic Gradient Descent
(SGD), Adam, and RectifierAdam for classification tasks [23].

Although non-adaptive optimizers, such as SGD, help ob-
tain better minima and generalization properties. Adam opti-
mizer is widely used as it leads to faster convergence due to

its adaptive learning rate. However, Adam suffers from signifi-
cant variance at the beginning of training. Rectifier-Adam (also
known as RectAdam) [24] was proposed to improve the con-
vergence of Adam.

In a nutshell, no optimizer works best for all the applica-
tions; thus, we propose a comparison of these optimizers in this
work.

3.3. Transfer Learning
Transfer learning is considered an innovative approach in

CNN training to achieve high accuracy with minimal time and
effort, relying on existing pre-trained model. The idea is to use
a model trained on a large dataset and transfer its knowledge
to the application at hand. The classical transfer learning ap-
proach adopts 2-stage strategies: (i) a model is trained from
scratch on a large dataset (i.e., pre-training on ImageNet [25]),
then (ii) the last layers of the model, are retrained for the down-
stream application. Here, we propose to extend this approach
by adding a third and final stage: (iii) we freeze the last layers
of the network and retrain initial layers (previously froze) in or-
der to ensure the consistency between those layers and the last
ones, and also to adjust all the weights according to the specific
target application.

3.4. Evaluation and Metrics
We are relaying on the classical metrics used in this context

which are:

• True positive (TP): Both manual and automated methods
label the object belonging to the buildings regions.
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(a) (b) (c)

Figure 2: Sample damaged buildings scenes from the xView dataset.

(a) (b)

Figure 3: (a) and (b) show the accuracy and loss, respectively, in function of time for BDA: the model is trained using Cross Entropy and Focal Loss functions.
From the loss curves, we can notice that the model using Focal Loss converges faster.

• True negative (TN): Both manual and automated methods
label the object belonging to the background.

• False positive (FP): The automated method incorrectly
labels the object as belonging to the building regions.

• False negative (FN): The automated method does not cor-
rectly label a pixel truly belonging to the building re-
gions.

These global definitions can be used to generate the following
performance metrics defined in Equations (4), (5) and (6).

Recall =
T P

T P + FN
(4)

Precision =
T P

T P + FP
(5)

F1 − S core =
2 × Pr × Rc

Pr + Rc
(6)

Also one of the essential metrics is the accuracy given in equa-
tion (7)

Accuracy =
T P + T N

T P + T N + FP + FN
(7)

In addition, we report the speed of convergence for each
scenario using the hyper-parameter ”number of epochs” taken
by the network to converge.

4. Buildings Damage Assessment

The following two sections detail how the proposed ap-
proach can be applied to BDA and BTC applications. For BDA,
we focus on the choice of the training paradigm (e.g., Transfer
Learning). For BTC, we focus on the architecture.

Buildings Damage Assessment task consists of classifying
buildings as damaged or not, in which a classification model
takes an RGB image and outputs the image class. This section
gives an overview of existing datasets and then explains the im-
plementation details and experimental results.

4.1. Dataset
Dataset choice is an essential component of our work. CNN

relies on labeled data to train its network and provides a high-
accuracy classifier model. Four datasets are considered, ana-
lyzed, and compared to choose the appropriate one for our re-
search.
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(a) (b)

Figure 4: (a) and (b) show the accuracy and loss, respectively, in function of time for BDA: the model is trained with SGD, Adam and RectAdam optimizers. The
model trained with SGD struggle to converge. Adam optimizer leads to faster convergence.

Dataset
Number

of Objects
Resolution
(in pixels) Format Generalizable

ABCD dataset [26] 8,500 128x128 .tif No
Flooding dataset [6] 10,000 128x128 .jpeg No
NOAA dataset [27] 500,000 9351x9351 .tif No
xView dataset [28] 1,000,000 3000x3000 .tif Yes

Table 1: Datasets survey and comparison.

We used several parameters for the datasets benchmark. Dam-
age type was the critical metric for choosing the appropriate
dataset. Damage type differs based on the disaster event. War,
earthquakes, and wind (hurricanes and tornadoes) usually result
in wholly or partly demolished and ruined buildings. Flooding
produces water in areas where it is not normally expected, while
volcano erupts lava.

For the scope of this work, we define a damaged building as
a partly or wholly demolished building. This definition covers
the most common damage type resulting from armed conflicts,
earthquakes, tornadoes, and hurricanes.

We considered four different datasets as potential candi-
dates for the BDA application: ABCD Dataset [26], Flooding
Dataset [6], NOAA Dataset [27] and xView Dataset [28]. Ta-
ble 1 shows a comparison between these four datasets. One
can conclude that xView dataset is the best candidate for our
research. xView dataset is well labeled and is big enough so
that we will choose it for BDA task. Figure 2 shows sample
damaged scenes from the xView dataset.

xView Dataset. xView is one of the largest publicly available
datasets with annotated images from complex scenes around
the world. xView dataset contains more than 1 million labeled
objects covering over 1400 Km2. Images have an average of
(3000x3000) pixels resolution using the “.tif” format and high-
quality labeling, which provides a large amount of available im-
agery to understand the visual world in new ways and address
a range of applications, including damaged building classifica-
tion.

4.2. Implementation

For each scenario in the following subsections, we rely on a
CNN network made from three layers of Convolutions + Max-
Pooling followed by Flatten, Dense, and finally, Softmax layer.
The used network is depicted in Figure 1. In our work, we used
the Sigmoid activation function for each convolution layer and
the ReLU activation function for the dense layer.

We carried an evaluation study over the test data. The con-
vergence condition is to reach a high accuracy value ( 99%) and
low loss threshold (≤ 0.001) over the trained data.

4.3. Experimental Results

In this section, we present the results for the different sce-
narios discussed in Section 3 based on the xView dataset.

Loss Function Results. In order to choose the best loss func-
tion suitable for the damaged building application, we built two
models using the architecture described in Figure 1, where the
first one uses cross-entropy loss function and the second one
uses focal loss function. After training the two models corre-
sponding to cross-entropy loss and focal loss until converging,
we present the results during the training phase and for the test
dataset in Figure 3 and Table 2. Figures 3 (a) and (b) show the
accuracy and the loss as a function of time (number of epochs)
for Cross-Entropy and Focal Loss functions. Figure 3a shows
clearly that both loss functions converge to 99% accuracy over
the trained data, but focal loss converges faster during training
as shown in Figure 3b. In addition, Table 2 confirms that focal
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Epochs Accuracy (%)

Cross Entropy Loss 138 97.33
Focal Loss 127 97.56

Table 2: The model is trained on Cross Entropy and Focal Loss functions for
BDA. We can notice that the model with Focal Loss converges faster.

Epochs Accuracy (%)

SGD - 85.05
Adam 138 97.33

RectAdam 174 97.23

Table 3: The model is trained with different optimizers for BDA; we can notice
that Adam leads to faster convergence while SGD struggle to converge.

loss converges faster than cross-entropy (127 epochs versus 138
epochs). Finally, we can notice that focal loss scores slightly
higher accuracy than cross-entropy over the test dataset.
To conclude, focal loss has better results against cross-entropy
loss in terms of the following three metrics: accuracy, number
of epoch to converge, and loss per epoch. Thus, we deduce
that focal loss has a better performance for damaged building
classification scope, and thus it will be adopted as part of the
following scenario.

Optimizer Results. No single optimizer choice can be made for
all different CNN applications. For instance, Adam optimizer
is widely adopted and used for several applications, but still, in
many use cases, SGD has reported better results. RectAdam
[24] was introduced as an enhancement for Adam. However,
in multiple scenarios, Adam has shown better and faster perfor-
mance.

Accordingly, and for the scope of this work, we consider
three optimizers: (i) SGD, (ii) Adam and (iii) RectAdam. We
will compare their suitability for damaged building classifica-
tion application and select the best option.

The results for SGD, Adam, and RectAdam optimizers dur-
ing the training phase and for the test dataset using xView, are
presented in Table 3 and Figure 4. Figures 4a and b show the
accuracy metric and the loss metric, respectively, as a function
of time (number of epochs) for SGD, Adam, and RectAdam
optimizers.

Results in Figure 4 reveal that SGD struggled to converge
and was not able to reach the desired accuracy and loss thresh-
olds during training, whereas Adam and RectAdam optimizers
both converge rapidly.

In terms of accuracy, Adam and RectAdam score better re-
sult (97.3% and 97.2%, respectively) than SGD (85.1%) as tab-
ulated in Table 3. Regarding the number of epochs needed to
converge, Adam is much faster than RectAdam (137 epochs vs.
174 epochs).

These results clearly show that Adam and RectAdam have
better performance than SGD in terms of accuracy, the number
of epochs to converge, and loss per epoch. We will adopt Adam
optimizer for damaged building classification application in the
following scenarios.

Epochs Accuracy (%)

Baseline 127 97.33
TL-VGG16 23 96.12

E-TL-VGG16 (ours) 69 (23 + 46) 98.96

Table 4: Comparison of different trained paradigms for BDA; ours (E-TL-
VGG16) is the best in terms of accuracy and faster to train than the baseline.

Transfer Learning Results. Our goal is to apply multiple mod-
els based on Transfer Learning (TL) and find the best method-
ology for training our damaged building classifier using TL. For
this sake, we consider the following three models:

• Model 1: network trained from scratch without using any
pre-trained weights. We will refer to this model as Base-
line model.

• Model 2: network based on transfer learning approach
using VGG16 pre-trained weights on ImageNet dataset
[8] where we freeze all layers and train only the last lay-
ers of the network. We will refer to this model as transfer
learning - VGG16 (TL-VGG16) model.

• Model 3: enhanced transfer leaning approach (discussed
in Section 3.3) where an additional final step is added.
We will refer to this model as enhanced - transfer learning
- VGG16 (E-TL-VGG16) model.

In this scenario, the three models above are compared and
analyzed. Table 4 clearly shows the difference in speed con-
vergence, where TL-VGG16 iterates only for 23 epochs to con-
verge, while the Baseline model needed 127 epochs.

From Table 4, one can notice that TL-VGG16 model con-
verges to the desired thresholds faster than the Baseline model.
Since using pre-trained weights would help the network to con-
verge faster. However, this does not necessarily result in higher
accuracy, as shown in Table 4. TL-VGG16 achieved 96% ac-
curacy over the test data, which is lower than the 97.5% scored
by the Baseline model.

The rationale behind E-TL-VGG16 model is to improve the
accuracy of the transfer learning approach while maintaining
good enough convergence speed. At epoch 23, when we un-
freeze the VGG16 layers and de-freeze the last layers, accu-
racy metric sharply decreases, and loss sharply increases. After
this glitch in performance, the network spends 69 epochs to re-
converge to previously attained thresholds.

E-TL-VGG16 performance tabulated in Table 4 reveals an
important improvement in the last percentages of the accuracy
to reach 98.96%. Finally, we also compute the F1-score achieved
by E-TL-VGG16, which turns to be equal to 99.4%.

5. Buildings Type Classification

This section elaborates on the approach used to classify
buildings into residential or non-residential using only RGB
aerial images. This task can pave the way for several appli-
cations, such as population estimation and resource allocation.
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Due to the lack of an appropriate dataset for such a task, we in-
troduce a new ”Beirut Buildings Type Classification” (BBTC)
dataset to help the community develop this field further. We
start by introducing the dataset then explaining reported exper-
imental results.

5.1. BBTC Dataset

Here, we propose a new dataset referred to as Beirut Build-
ings Type Classification (BBTC) after presenting an overview
of existing datasets:

Related Datasets. To the best of our knowledge, there is no
high-resolution satellite images dataset for classifying buildings
into residential/non-residential. Among existing datasets, we
found only DSTL dataset [29] that provides 1km x 1km satellite
images in both 3-band and 16-band formats. However, DSTL
images’ resolution is not high (i.e., 1.24 m) and the dataset is
highly imbalanced (i.e., 3.1% non-residential buildings).

BBTC Description. The dataset consists of 17,033 RGB im-
ages, where each image contains a single building and is anno-
tated as residential (15,330 buildings) or non-residential build-
ings (1,703 buildings which accounts for 10% of annotated ob-
jects). The tiles are extracted from high resolution images (i.e.,
∼ 50 cm) and covers Beirut city. Some examples can be seen in
Figure 5.

BBTC Creation. The dataset was created and labeled using the
following steps:

• buildings polygons extracted from OpenStreetMap as a
shapefile.

• annotation done using QGIS software; shapefile placed
on two base maps for visual confirmation (Bing Virtual
Earth and Google Satellite Hybrid) and each building la-
beled as residential or non-residential. Entire annotated
buildings are almost 20,000 objects. Non-residential ob-
jects include universities, schools, governmental facili-
ties, mosques, churches, commercial centers, and indus-
trial facilities.

• corresponding tile for each building requested from Map-
box at zoom level 17.

• finally, buildings cropped (slightly larger than the cor-
responding polygon to account for any inaccuracy) and
saved. Duplicate buildings (i.e., retrieved multiple times)
are ignored, reaching a total of 17,033 objects.

BBTC dataset can be accessed via the following bucket url:
https://storage.googleapis.com/bbtc/bbtc dataset.tar.gz

5.2. Experimental Results

This section provides and discusses experimental results for
BTC.

Model
Avg. time

(per epoch) Val. Acc Epoch Test Acc

VGG16 3m20s 0.953 95 0.935
ResNet 50 5m30s 0.947 44 0.933
Res2Net 9m30s 0.960 40 0.943

EfficientNet 3m13s 0.960 49 0.941
RexNet 3m15s 0.962 99 0.948

Table 5: Ablation study for BTC on the proposed dataset; We compare different
architectures. RexNet outperforms all the other models in terms of accuracy.

Optimizer
Avg. time

(per epoch) Val. Acc Epoch Test Acc

SGD 3m15s 0.962 99 0.948
Adam 3m15s 0.957 90 0.945

RectAdam 3m15s 0.958 68 0.947

Table 6: Ablation study for BTC on the proposed dataset; RexNet is trained
with several optimizers. SGD leads to the best accuracy while RectAdam leads
to faster convergence.

Architecture. We compared 5 architectures including state of
the art ones; VGG16, ResNet50 [30], Res2Net [31], EfficientNet-
b0 [32] and RexNet [33]. All models trained with CE and SGD
optimizers. Table 5 shows that RexNet gives the best results in
terms of accuracy at the test set (94.8%), while average time
per epoch (3minutes 15 seconds) is almost equal to Efficient-
Net. This result does not come as a surprise since RexNet is a
newly proposed architecture where the authors claim to provide
high accuracy while achieving low time complexity comparable
to EfficientNet.

Optimizer. Finally, we adopt the winning model (i.e., RexNet)
and train it using different optimizers. From Table 6, one can
notice that SGD optimizer was able to converge, in contrast to
previous performance witnessed in Table 3. SGD achieved the
best accuracy on the test set (94.8%) compared to Adam and
RectAdam, although it is the slowest with convergence time
equal to 99 epochs.

6. Conclusion

In this paper, we followed a 2-stage approach for buildings
classification using only RGB satellite images. We focused here
on the second stage, which consists of classification. We con-
ducted extensive experiments to find the best hyperparameters,
network architecture, and training paradigm, and we proposed
a new transfer learning approach. Due to the lack of appropriate
residential/non-residential buildings classification datasets, we
proposed BBTC, a new dataset of high-resolution satellite im-
ages. We validated the proposed approach on two applications:
Buildings Damage Assessment and Buildings Type Classifica-
tion, which showed outstanding performance in several metrics
on xView and BBTC datasets.
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Figure 5: Sample buildings’ images from the proposed BBTC dataset.
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stance classification using street view images, ISPRS journal of pho-
togrammetry and remote sensing 145 (2018) 44–59.

[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense
object detection, in: Proceedings of the IEEE international conference on
computer vision, 2017, pp. 2980–2988.

[23] S. Ruder, An overview of gradient descent optimization algorithms, arXiv
preprint arXiv:1609.04747 (2016).

[24] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, J. Han, On the variance
of the adaptive learning rate and beyond, in: International Conference on
Learning Representations, 2019.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A
large-scale hierarchical image database, in: 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255. doi:10.
1109/CVPR.2009.5206848.

[26] A. Fujita, K. Sakurada, T. Imaizumi, R. Ito, S. Hikosaka, R. Nakamura,
Damage detection from aerial images via convolutional neural networks,
in: 2017 Fifteenth IAPR International Conference on Machine Vision Ap-
plications (MVA), 2017, pp. 5–8. doi:10.23919/MVA.2017.7986759.

[27] Hurricane harvey: Emergency response imagery of the surrounding re-
gions, https://storms.ngs.noaa.gov/storms/harvey/index.html.

[28] D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bu-
latov, B. McCord, xview: Objects in context in overhead imagery, arXiv
preprint arXiv:1802.07856 (2018).

[29] Dstl satellite imagery feature detection: Can you train an eye in the sky?,
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data.

[30] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 770–778.

[31] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, P. Torr,
Res2net: A new multi-scale backbone architecture, IEEE Transactions on
Pattern Analysis and Machine Intelligence 43 (2) (2021) 652–662. doi:

8

https://doi.org/https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.1111/mice.12263
https://doi.org/10.1111/mice.12263
https://doi.org/10.5194/isprs-annals-IV-2-89-2018
https://doi.org/10.5194/isprs-annals-IV-2-89-2018
https://www.mdpi.com/2076-3417/9/6/1128
https://www.mdpi.com/2076-3417/9/6/1128
https://doi.org/10.3390/app9061128
https://www.mdpi.com/2076-3417/9/6/1128
https://www.mdpi.com/2072-4292/11/3/287
https://www.mdpi.com/2072-4292/11/3/287
https://doi.org/10.3390/rs11030287
https://www.mdpi.com/2072-4292/11/3/287
https://doi.org/10.1109/AIPR.2017.8457946
https://doi.org/10.1109/AIPR.2017.8457946
https://doi.org/10.1111/mice.12313
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.106965
https://doi.org/https://doi.org/10.1016/j.ymssp.2020.106965
https://doi.org/10.1109/TIP.2020.2988175
https://www.mdpi.com/2072-4292/12/23/3847
https://www.mdpi.com/2072-4292/12/23/3847
https://doi.org/10.3390/rs12233847
https://www.mdpi.com/2072-4292/12/23/3847
https://www.mdpi.com/2072-4292/12/17/2805
https://www.mdpi.com/2072-4292/12/17/2805
https://doi.org/10.3390/rs12172805
https://www.mdpi.com/2072-4292/12/17/2805
https://www.mdpi.com/2220-9964/8/6/247
https://www.mdpi.com/2220-9964/8/6/247
https://www.mdpi.com/2220-9964/8/6/247
https://doi.org/10.3390/ijgi8060247
https://www.mdpi.com/2220-9964/8/6/247
https://doi.org/10.1080/23729333.2015.1055644
https://doi.org/10.1080/23729333.2015.1055644
https://doi.org/10.1080/23729333.2015.1055644
http://arxiv.org/abs/https://doi.org/10.1080/23729333.2015.1055644
https://doi.org/10.1080/23729333.2015.1055644
https://doi.org/10.1080/23729333.2015.1055644
https://www.mdpi.com/2072-4292/6/2/1347
https://www.mdpi.com/2072-4292/6/2/1347
https://doi.org/10.3390/rs6021347
https://doi.org/10.3390/rs6021347
https://www.mdpi.com/2072-4292/6/2/1347
https://doi.org/10.1177/2399808320921208
https://doi.org/10.1177/2399808320921208
http://arxiv.org/abs/https://doi.org/10.1177/2399808320921208
http://arxiv.org/abs/https://doi.org/10.1177/2399808320921208
https://doi.org/10.1177/2399808320921208
https://doi.org/10.1177/2399808320921208
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.23919/MVA.2017.7986759
https://storms.ngs.noaa.gov/storms/harvey/index.html
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/data
https://doi.org/10.1109/TPAMI.2019.2938758


10.1109/TPAMI.2019.2938758.
[32] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional

neural networks, in: International Conference on Machine Learning,
PMLR, 2019, pp. 6105–6114.

[33] D. Han, S. Yun, B. Heo, Y. Yoo, Rethinking channel dimensions for ef-
ficient model design, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 732–741.

9

https://doi.org/10.1109/TPAMI.2019.2938758

	1 Introduction
	2 Related Work
	2.1 Buildings Damage Assessment
	2.2 Buildings Type Classification

	3 Methodology
	3.1 Loss Function
	3.2 Optimizer
	3.3 Transfer Learning
	3.4 Evaluation and Metrics

	4 Buildings Damage Assessment
	4.1 Dataset
	4.2 Implementation
	4.3 Experimental Results

	5 Buildings Type Classification
	5.1 BBTC Dataset
	5.2 Experimental Results

	6 Conclusion

