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Abstract

Buildings’ segmentation is a fundamental task in the field
of earth observation and aerial imagery analysis. Most
existing deep learning-based methods in the literature can
be applied to fixed or narrow-ranged spatial resolution im-
agery. In practical scenarios, users deal with a broad spec-
trum of image resolutions. Thus, a given aerial image often
needs to be re-sampled to match the spatial resolution of
the dataset used to train the deep learning model, which
results in a degradation in segmentation performance. To
overcome this, we propose a Scale-invariant Neural Net-
work (Sci-Net) that can segment buildings present in aerial
images at different spatial resolutions. Specifically, our ap-
proach leverages UNet hierarchical representations and di-
lated convolutions to extract fine-grained multi-scale rep-
resentations. Our method significantly outperforms other
state of the art models on the Open Cities AI dataset with a
steady improvements margin across different resolutions.

1. Introduction

Semantic segmentation is one of the most investigated
computer vision topics, where the aim is to provide a pixel-
wise classification over several classes in a particular image.
With the current deep learning breakthrough, several fully
connected neural network models are proposed for semantic
segmentation [3, 24, 30, 33, 38, 44], and employed for sev-
eral applications such as autonomous driving [20], buildings
footprint extraction [8, 19] and medical applications [23].

Buildings’ footprint segmentation from aerial imagery
[14,17,26,31,34] is important for several applications such
as urban planning, disaster assessment, and change analysis.
In addition, several online challenges have addressed deep-
leaning-based buildings’ segmentation topics such as dif-
ferent nadir-angles and non-optical and noisy data. DIUx’s
xView2 [13], SpaceNet challenges (1, 2, 4, 5 and 7) [37],
and Open Cities AI [22] are examples of recent well-known
competitions focusing on this research topic.
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Existing buildings’ segmentation models are trained on
a fixed spatial resolution. Training a robust and accurate
deep learning model capable of segmenting buildings from
a wide range of input spatial resolution images remains
little investigated in the literature. Sate-of-the art build-
ings’ segmentation models perform well on test images of
the exact spatial resolution as the training dataset used to
generate the model. However, in practical scenarios, test
images might be of various resolutions, resulting in non-
optimal performance. This is due to several issues, first,
the fragmentation of building segments in high-resolution
images, as the model fails to acquire a large enough recep-
tive field, and it becomes harder to classify pixels closer
to the center of large buildings accurately. Second, in low-
resolution test images the model seamlessly merges the pix-
els of small building instances with the background, this
is known as under-segmentation of buildings’ instances,
where the model suffers from an over-segmentation of the
background, leaving false negative holes in the mask. These
problems are commonly addressed by resampling the test
images to match the resolution of the training dataset. How-
ever, as the gap between inference and training image reso-
lution increases in both directions, the quality of the resul-
tant segmentation masks decreases.

In this context, we propose Scale-invariant neural net-
work (Sci-Net) that is able to extract a multi-scale represen-
tation with wider receptive field of an aerial image to cope
with varying spatial resolutions during test. The contribu-
tion of this paper is two-fold: (i) show that existing SoA
buildings’ segmentation models often suffer from fragmen-
tation, under-segmentation, or over-segmentation, (ii) pro-
pose Sci-Net, a new model that significantly outperforms
other approaches on different test image resolutions.

The rest of the paper is organized as follows: Section
2 reviews current research in the literature related to build-
ings’ segmentation from aerial images. Practical problems
in the process of buildings’ segmentation from aerial im-
ages are discussed in Section 3. Section 4 introduces the
proposed Sci-Net model and relevant background details.
Section 5 describes the Open Cities AI dataset and the ex-
perimental results. Finally, the manuscript is concluded in
Section 6.
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2. Related Work

In this section, we details some related work relevant to
the problem in hand.

2.1. Multi-Scale Context for Semantic Segmenta-
tion:

Capturing multi-scale context has gained a lot of atten-
tion due to its importance for semantic segmentation.

To this end, several methods have been proposed. Im-
age Pyramid methods [4, 11, 28, 32] are one of the first ap-
proaches, where the feature extractor is applied on the same
input with varying resolutions, then different aggregation
mechanisms are applied to gather the features from all res-
olutions.

Encoder-Decoder approaches [1, 12, 18, 27, 33] have
proven to be successful, where the input is processed by a
feature extractor that reduces the spatial size and increases
the number of channels progressively, then the decoder tries
to decode the features and produce the output map. These
approaches exploit the multi-scale feature in the encoder
(e.g. using skip connections [33] or transferred pool in-
dices [1]).

Spatial Pyramid Pooling are another way to capture
global context, methods like DeepLab [3] rely on dilated
convolutions [43] to process the feature map using different
rates in parallel. PSPNet [44] proposes to process different
pooled feature maps with different resolution. In [45], au-
thors introduce a modified version of squeeze and excitation
blocks denoted as Squeeze and Attention (SA) module. SA
module re-weights spatial locations in the features accord-
ing to the local and global context, thus, improving seman-
tic segmentation. Dilated or Atrous convolutions are widely
used in this context [7, 39]

2.2. Multi-Scale Context for Semantic Segmenta-
tion in Remote Sensing:

Being able to segment objects with multiple resolutions
is of high interest for the remote sensing community. While
most of the work proposed in the computer vision commu-
nity can be adapted to satellite images, several work have
been also proposed in this context. [15] leverage multi-task
learning and distillation to produce several output maps de-
pending on the buildings size. [25] propose to reuse previ-
ous feature maps by the help of the connections from each
layer to the same sized subsequent layers. [29] propose an
efficient model based on separable factorized residual block
in addition to dilated convolution.

Authors in [31] introduce channel relation module that
applies global average pooling over the features and spatial
relation module to obtain global spatial relation features ca-
pable of capturing global contextual dependencies for iden-
tifying various objects. However, the validation of their re-

sults is based on the Postdam dataset with a fixed high res-
olution.

Furthermore, authors in [14] introduce the Local Feature
Extractor (LFE) module, which is composed of a series of
dilated convolutions of decreasing rates, after aggressively
increasing the rates of dilated convolutions used in the front-
end module to attain a high receptive field throughout the
feature extraction process. They show that LFE module
helps with tiny objects by recovering the spatial inconsis-
tency and extracting local structure at higher layers.

3. Problem Description
3.1. Challenges

Designing a model that is capable of segmenting build-
ings footprint from aerial images at different spatial resolu-
tions faces the following challenges:

(i) Features Resolution: Most Feature extractors [6, 16,
35, 36, 40] are a series of five down-sampling stages,
where each stage outputs denser and more meaningful
representations than the previous one. However, fea-
tures spatial resolution is reduced to half at each stage
using a 2x2 pooling operation or a convolution with
a stride = 2. This reduction leads to a loss in spatial
information the deeper we go in the network, as the
features extracted by the last stage have a resolution
32× smaller than the input size (output stride = 32).

(ii) Field of View: In feature extraction networks, convo-
lutions are applied with a 3 × 3 receptive field (ker-
nel size). Although this works very well in segment-
ing small to medium-sized objects, it often fails when
dealing with larger objects, (i.e., building footprints at
very high resolutions such as 2cm/pixel). In the lat-
ter case, predicted segments often suffer from frag-
mentation, under-segmentation, and noise because the
field of view is too small for the network to decide
if the pixel belongs to a larger object or the back-
ground. On the contrary, increasing receptive field by
applying convolutions with an increasing kernel size
leads to losing local spatial information and exponen-
tial growth in both time and computational complexity.

3.2. Motivation

Motivated by the observations above, we propose the fol-
lowing solution:

(i) To avoid losing spatial features details and keep a rea-
sonable computational complexity, we adopt the skip
connections from the encoder to the decoder.

(ii) To increase the field of view or the receptive field: (a)
we use an encoder/decoder framework where the fea-
ture map spatial size decreases/increases with depth for
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the encoder/decoder, (a) we propose to include dilated
convolutions, at the bottleneck of the encoder.

To this end, we propose Sci-Net; a UNet like architecture
augmented with DenseASPP modules. We provide more
details in the following sections.

Figure 1. Dilated 3× 3 convolutions with rates = 1, 2 and 3 ac-
quiring 3×3, 5×5 and 7×7 receptive fields, respectively.

4. Sci-Net
4.1. Dilated Convolutions

Dilated convolutions work just like regular convolutions;
however, they manage to increase the size of the receptive
field by the insertion of holes between the weights of the
kernel, according to a selected rate denoted by r. For a 2-
dimensional input feature map x, the output feature map y
obtained as a result of a dilated convolution at every spatial
location i with a rate r is defined according to the following
function:

y[i] = ∑(x[i+ r ∗ k]∗w[k]). (1)

The rate r corresponds to the distance between the ker-
nel weights. In this manner, a 3× 3 convolution with rates
= 1,2and3 acquires the same receptive field size as 3× 3,
5× 5, and 7× 7 regular convolutions respectively with the
same number of parameters as a 3× 3 regular convolution
as shown in Figure 1. Dilated convolution increases the re-
ceptive field size without incurring additional time or com-
putational complexity.

4.2. Atrous Spatial Pyramid Pooling (ASPP)

ASPP is a module that applies multiple dilated convo-
lutions with different rates on the feature maps to capture
multi-scale representations. The concept has been first in-
troduced in [2] and then further developed in [3, 5].

Typically one 1×1 convolution, three 3×3 dilated con-
volutions of atrous rates equal to (8, 12 and 18), and a global
average pooling layer are applied in parallel. The resulting

(a) ASPP

(b) Dense ASPP

Figure 2. ASPP vs. Dense ASPP architectures.

representations are then concatenated together and pooled
with a 1×1 convolution as shown in Figure 2 (a). Applying
three different and separate dilated convolutions allows the
model to extract spatial information at three different scales,
with a maximum receptive field size equal to 37 pixels.

4.3. Dense ASPP

Dense ASPP [42] applies dilated convolutions with in-
creasing atrous rates in a cascade manner. The input to each
dilated convolution block is the initially extracted feature
maps concatenated with all the representation from previ-
ous dilated convolutions of lower rates as shown in Figure 2
(b). Typically, four atrous convolutions are applied with
rates equal to (3, 6, 12 and 18). When two convolutions of
different receptive fields are stacked together, the resulting
receptive field increases in a linear manner, as follows:

Rnew = R1 +R2 −1. (2)

where R1 and R2 denote receptive fields size in pixels of
the 1st and 2nd convolutional layers, and Rnew is the size of
the new receptive field after stacking the two convolutional
layers together.

Usage of Dense ASPP would lead to 16 receptive field
scales and a maximum value equal to 79 pixels, which
means that more pixels are involved in the convolution re-
sulting in a denser feature pyramid than ASPP. Thus, based
on the above analysis, Dense ASPP is integrated into the
proposed Sci-Net model.

4.4. Sci-Net Architecture

In this subsection, we provide a detailed description of
the proposed Sci-Net model architecture and illustrate the

3



Figure 3. Proposed Sci-Net Architecture.

role of the modifications that we apply to deliver a better
performance.

The proposed Sci-Net model shown in Figure 3 adapts
conventional UNet encoder-decoder architecture [33] with
the following modifications:

(a) Replacing the encoder with a more powerful yet
light-weight feature extractor from the RegNet Fam-
ily (RegNetY −1.6GF). RegNets have similar perfor-
mance to their Efficient-Net counterparts while being
3x to 5x times faster.

(b) Integration of a Dense ASPP block to extract multi-
scale representation from the features of the last en-
coder stage. The output features of Dense ASPP are
the input to the first decoder block. We used the fol-
lowing rates (3,6,12,18) for the dilated blocks, and we
set the output channels to 256 for each block. When
concatenated, the multi-scale representations alone are
a total of 256×4 = 1024 channels, and the initial fea-
ture maps contain 888 channels.

(c) Substitution of the last 3×3 convolution with a kernel
stride = 2 in the 5-th encoder stage, with a dilated con-
volution of a low atrous rate = 2 and kernel stride = 1
to prevent downsampling of features produced by stage
5 and thus the output stride remains equal to 16 instead
of 32. This modification preserves a sufficiently good
spatial resolution at the Dense ASPP input.

(d) No upsampling is applied at the first decoder block as
both stages 4 and 5 feature maps have the exact spatial

resolution.

Each decoder block comprises two 3x3 convolutions
with a stride equal to 1 followed by a 2x upsampling bi-
linear interpolation.
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Figure 4. Tiles distribution per resolution in cm/pixel in the Open
Cities AI dataset.

5. Experiments
In this section, we present the dataset, the training and

implementation details and finally, the experimental results.
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5.1. Dataset

As far as we know, Open Cities AI Challenge dataset
(OCAIC) is the only aerial images dataset suitable for the
underlying task:

OCAIC [22]: To assess the performance evaluation of the
proposed Sci-Net model over different images’ spatial res-
olution, we used the Open Cities AI Challenge dataset (also
known as Segmenting buildings for disaster resilience). The
majority of the data are collected across different African
cities, where the images and labels quality varies from one
region to another. Open Cities AI dataset is split into two
tiers.For the scope of this work, tier 1 images are used,
where imagery and labels are distributed under the CC-BY-
4 and ODbL-1.0 licenses, respectively. Tier 1 data is made
of 31 GeoTiff images of different spatial resolution and size.
Resolution varies from very high (2cm/pixel) up to medium
(20cm/pixel) resolutions. Moreover, Figure 4 shows images
distribution across different resolutions.

The resulting dataset contains 40,000 tiles with their cor-
responding buildings’ masks. The dataset is split as 90 %
for training and 10 % for testing.

5.2. Implementation details

Here we explain the implementation details for other ap-
proaches (For Sci-Net please refer to section 4 for more de-
tails).

For fair comparison with Sci-Net, we ensured, as far as
possible, that we have the same parameter choices for all
compared methods. Specifically, the encoder is replaced by
RegNetY −1.6GF for all methods, except for HRNet which
uses HRNetV2-W32 as backbone. The decoder channels
are fixed to (256, 128, 64, 32, 16) except for Deeplabv3+
where the number of channels is fixed to 256, and PSPNet
where the number of output channels is 512 (number of fil-
ters in Spatial Pyramid). The number of channels for the
PAB module in MANet is 64.

All encoders are initialized with ImageNet [9] weights.

5.3. Training details

In all our experiments, the models are trained until con-
vergence (50 epochs) using Adam optimizer [21] and poly-
nomial learning rate policy [44] where the learning rate is
decayed from the initial one of 0.0001 till zero at the last
epoch as follows:

lrt+1 = lrt ∗ (1−
epocht+1

epochmax
)0.9 (3)

A weighted combination of Dice loss and Binary Cross-
Entropy (BCE) loss is used as defined in the following:

Loss = Γ1 ·BCE +Γ2 ·Dice (4)

where Γ1 = Γ2 = 0.5 is considered for simplicity.
During training, we use a batch-size of 12, random 512×

512 chips of the original 1024× 1024 tiles and apply only
positional augmentations like horizontal-flipping, vertical-
flipping, and 180° rotation with an 80% probability. These
augmentations help to introduce some randomness at every
training iteration and prevent the model from over-fitting.

Moreover, the training is performed over a Single Titan-
XP GPU card with 12 GB of VRAM. In addition to the
proposed Sci-Net model, we trained some well-known SoA
models for comparison. Training these models took be-
tween 20 and 120 hours, depending on the model complex-
ity.

Training framework is done in PyTorch using mixed
precision functionalities [?] and pytorch− segmentation−
models implementation [41].
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Figure 5. Performance comparison of Sci-Net (in green) versus
SoA models in terms of micro- and macro- IoU and F1 scores.

5.4. Metrics

Performance evaluation of the proposed Sci-Net and
SoA models is measured using macro, and micro Intersec-
tion over Union (IoU) and F1-score defined below:

IoU =
T P+ ε

T P+FP+FN + ε
(5)
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Model micro-IoU micro-F1 macro-IoU macro-F1 Params. (M) GFLOPs

PSPNet [44] 78.47 87.93 85.04 89.55 12.0 8.7
DeepLabV3+ [5] 79.83 88.78 86.28 90.50 12.0 13.5

MANet [10] 80.08 88.93 86.20 90.38 35.5 25.0
HRNet [38] 80.30 89.07 82.85 90.46 29.5 45.0

Sci-Net 82.25 91.04 88.42 92.62 24.2 33.1

Table 1. Performance metrics of Sci-Net architecture compared to existing SoA models on the testset.

F1− score =
(1+β 2) ·T P+ ε

(1+β 2) ·T P+β 2 ·FN +FP+ ε
(6)

where β = 1 and ε = 0.0001. T P, FP, and FN are True
Positive, False Positive, and False Negative, respectively.

The employed metrics are used according to the follow-
ing two types of averaging across the whole test dataset:

1. Macro scores are calculated per prediction according
to T P, FP, and FN for each prediction mask and then
averaged afterward.

2. Micro scores are calculated using the total number of
T P, FP, and FN across all prediction masks, and then
the final score is computed accordingly.

Macro scoring helps in assessing the average perfor-
mance per image, while micro scoring assesses the overall
performance. Correctly classified images with blank ground
truth masks (True Negative) provide a boost in macro scor-
ing. However, such images do not affect micro scoring, as
it treats the whole dataset as having one large ground truth
mask.

It is worth noting that simulation results are validated
every epoch, and the model’s weights that maximize micro-
IoU score over the validation set are saved.

5.5. Comparison to other methods

Experimental results reveal the performance superiority
of the proposed Sci-Net over several SoA models in terms
of IoU and F1-score across varying resolutions. At infer-
ence time, the images are fed to the neural network at full
scale (1024× 1024). Table 1 shows that the proposed Sci-
Net model provides a significant improvement of at least
2% score over benchmarked SoA models. Sci-Net attained
a micro-IoU score of 82.25%. Table 1 also shows that Sci-
Net scored the highest macro-IoU value of 88.42%, which
indicates that it leverages the best per-image performance.
Furthermore, the 2% minimum score improvement margin
is observed in micro and macro F1-scores (91.04% and
92.62% respectively). Thus, the proposed model attains

better precision and recall against competitor models. Mod-
els like PSPNet and DeepLabV3+ failed to provide near
good results at some resolutions leading to a degradation
in their scores. Complexity analysis...

Furthermore, we plot micro and macro IoU and F1-
scores for each resolution (cm/pixel) for every model as
shown in Figure 5. The green curve corresponding to the
Sci-Net model always performs better than all other mod-
els across different metrics and resolutions, which shows
that it can effectively extract better multi-scale represen-
tations than the existing models. Sci-Net curve is consis-
tently above all other curves for the four presented score
graphs, which indicates that it is less prone to performance
degradation when the scale changes. It is unclear which
model holds the ”runner up” spot, as these models alternate
places on varying resolutions. For instance, UNet+ASPP
(in red) achieves competitive scores for resolutions in range
(2cm/pixel up-to 8cm/pixel), however its performance de-
teriorates for larger resolutions. PSPNet (in brown) bench-
marks the worst performance for all resolutions.

To better visualize our results, a sample of predicted
masks by each model are shown in Figure 6. For instance,
problems like fragmentation and under-fitting are solved us-
ing Sci-Net by acquiring sufficiently large receptive fields
capable of relating far pixels that belong to large building
instances at high resolutions (Masks in rows 1, 2, 3, and
4). In the first four rows, it is clear that Sci-Net succeeds
in segmenting large building instances. For example, mod-
els like DeepLabV3+, UNet, and HRNet showed a critical
level of mask fragmentation for that large building instance
in the first row. Also, at lower resolutions (rows 6 and 7),
Sci-Net can avoid over-segmentation, unlike other architec-
tures such as HRNet that misclassified a significant amount
of background pixels, as shown in row 6.

While models that use pyramid pooling like PSPNet per-
formed well in segmenting large building instances (row
1 and 2), they often fails in capturing small to medium-
sized buildings at lower resolutions. Finally, Unet+ASPP
could not capture enough multi-scale information to seg-
ment large structures properly (rows 1, 2, and 3). Sci-Net
proved to be the most efficient at all the presented resolu-
tions, as shown in Figure 6.

6



Image PSPNet DeepLabV3+ UNet MANet HRNet UNet+ASPP Sci-Net

1
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Figure 6. Predicted masks for Sci-Net and benchmarked SoA models for various images at different resolutions revealing fragmentation,
under- and over-segmentation issues.

Model micro-IoU micro-F1 macro-IoU macro-F1 Params. (M) GFLOPs

UNet [33] 80.18 89.00 86.01 90.16 14.5 23.2
UNet+ASPP 80.47 89.18 86.65 90.79 21.0 28.5

UNet+DenseASPP (Sci-Net) 82.25 91.04 88.42 92.62 24.1 33.1

Table 2. Ablation Study; Dens ASPP brings a significant improvement to UNet on the test set, compared to ASPP.

In terms of model complexity, Table 1 shows that our
model is smaller than MANet and HRNet, which indicates
that the improvements is not due only to adding more mod-

ules/parameters.
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5.6. Ablation Study

In this subsection, we investigate the importance of our
design choices. From Table 2, we can notice that the di-
lated convolutions at the bottleneck, brings slight improve-
ments to the UNet model. On the other hand, the Dense
ASPP module leads to significant improvements compared
to ASPP for the UNet model. This observation also holds
for the evaluation on several resolutions (Figure 5) and in
the qualitative comparison in Figure 6.

6. Conclusion
This paper proposes Sci-Net, a new model capable of ac-

curately segmenting buildings’ footprint at multi-scale spa-
tial resolutions. We compare the performance of Sci-Net
with other well-known SoA models. We show that the pro-
posed Sci-Net architecture does not suffer from fragmenta-
tion, over-segmentation, and under-segmentation problems.
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