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Abstract During 2015, 35,092 people died in motor vehicle crashes on the U.S. roadways,

an increase from 32,744 in 2014. The 7.2% increase is the largest percentage increase in

nearly 50 years. To reduce reckless driving and the resulting accidents, law enforcement

agencies deploy speed traps. However, limited resources prevent full coverage at all times,

which leaves many roads uncovered. Law enforcement agencies cannot rely on deter-

ministic coverage as it allows drivers to observe and anticipate covered areas. Therefore,

randomized speed trap deployment is vital for active road security. This paper provides

random and optimal speed traps deployment based on our innovative STOP framework.

STOP utilizes game theory to model drivers’ and law enforcers’ behaviors. In particular,

we provide distinct weights to different actions based on the accidents probability, derive

the Nash Equilibrium and Stackelberg Security Equilibrium, and determine the best

strategies to deploy. The optimal game solution maximizes law enforcer utility, conse-

quently minimizing the cost paid by the society in terms of reducing vehicle accidents.
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1 Introduction

Achieving traffic safety is a challenging task for the police around the world. Traffic

collisions, fatalities and injuries result in a very high societal cost every year [1–3]. The US

National Highway Traffic Safety Administration (NHTSA) statistics show that most road

accidents occur with passenger cars (36%) [1]. These alarming statistics draw attention to

the road safety issue and underline the urgent need to find a solution that reduces road

collisions.

Speed trap deployment is the conventional solution to make the drivers adhere to traffic

laws through tickets and fines. Current speed trap deployments, however, face several

problems:

• They lack randomization which allows drivers to observe speed trap arrangements over

time and form a predictable pattern to their benefits;

• They have limited number of resources which makes it impossible to fully cover the

roads at the same time. Thus, speed traps deployment is typically limited to certain

roads, leaving many others uncovered;

• They are not optimal as they do not take into consideration the statistics of accidents

per roads.

This paper addresses the highlighted issues of speed trap deployments by presenting an

innovative platform speed trap optimal patrolling (STOP): STOP is developed to assist law

enforcement agencies in scheduling randomized and optimized traffic patrols on their road

networks. We also provide an application of STOP in order to help the internal security

forces (ISF) in deploying speed traps.

STOP achieves optimality by ensuring maximal road coverage to reduce the road

accidents probability and the resulting cost paid by the government. We model the problem

a Stacklberg security game (SSG) where the players are the law enforcer and the driver.

STOP outputs a probability distribution over the strategies which the law enforcer can use

to schedule the speed traps.

The paper is organized as follows: In the second section, we present a literature review

on law enforcement solutions. In the third section, we present our platform STOP along

with its modules. In the last section, we provide a numerical application of STOP. Finally,

we present a result analysis before concluding the paper.

2 Literature Survey

Law enforcement has received wide research interest in the past years. Typically,

researchers formulate the problem of deploying law enforcement checkpoints using game

theory, mainly Stackelberg game [4–9].

Game theory is a mathematical tool that allows modeling competitive situations where

rational decision makers interact to achieve their objectives [10, 11]. A SSG [12] is a two-

player game in which a player assumes the role of a ‘‘leader’’ and another assumes the role

of a ‘‘follower’’. The SSG takes places in rounds; the leader chooses an action from a set A1

and the follower responds with an action from a set A2, after being informed of the leader’s

choice. The leader in a Stackelberg Security Games is the defender who has to protect a set

of targets from the follower (identified as the adversary). The defender employs a finite

number of k resources R = {r1, r2,…, rk} to protect the set of N targets T = {t1, t2,…, tN}

against the adversary, such that k\N (resources cannot cover all the targets).
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If the players move simultaneously, the standard solution concept is Nash Equilibrium

(NE) which is attained when the players have no reason to deviate from the given strategy

profile. However, in the Stackelberg model, the defender chooses a mixed strategy first,

and the attacker chooses a strategy after observing the defender’s choice. In this case, the

standard solution is a Strong Stackelberg Equilibrium (SSE), [13]. The SSE is attained

when the defender chooses a strategy that maximizes its utility for all possible attacker

actions. The attacker responds with a strategy that maximizes its utility given the defen-

der’s strategy.

Many models have been developed to address the problem of randomizing the

deployment of law enforcement assets [14–17]. These models include ARMOR [18], IRIS

[19], PROTECT [20], GUARDS [21], TRUSTS [22]. Nevertheless, most of these models

focus on securing infrastructure such as airports, historical landmarks, or a location of

political or economic importance, and none had considered the problem of traffic patrolling

(or deploying speed traps to deter speeding drivers).

In this paper, we present STOP, an innovative patrolling platform. Compared to the

existing literature, our contributions are six-fold:

1. We provide a speed trap strategy randomized in space which considers the roads prone

to accidents using statistics on accident rates per road.

2. We provide a speed trap strategy randomized in time through temporally randomizing

resource allocation; this overcomes drivers’ anticipation problem.

3. STOP avoids applying speed traps deployment in congested roads by considering the

road congestion situation.

4. We adopt a compact representation of the strategies to minimize the strategies space.

5. We proceed by solving the game using two solutions: NE and SSE. We provide then a

comparison between the mentioned solutions to devise the best solution to adopt.

6. To save costs incurred from patrolling shifts, we take into consideration, as part of our

cost modeling, the distance traveled by each patrol car.

3 Speed Trap Spatio-Temporal Platform

In this section, we present STOP, the platform that achieves optimal deployment of speed

traps in the spatio-temporal domain. It consists of the following six modules as depicted in

Fig. 1.

• Module 1 provides an interface for the law enforcement agency to input the following

parameters: date and time, number of available resources, traffic intensity, probability

of accidents, and the set of roads.

• Module 2 outputs uncongested roads that are appropriate for speed traps deployment. It

also derives all possible strategies of law enforcer speed traps deployment on selected

uncongested roads (section 4).

• Module 3 computes law enforcers’ and drivers’ utilities. It provides the payoff matrices

needed for equilibrium resolution (section 5).

• Module 4 computes probability distribution of strategies based on game equilibriums:

NE and SSE (section 6).

• Module 5 outputs a schedule to be implemented by the law enforcer by randomizing

strategies over the day (section 7).
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• Module 6 computes the minimal distance to be traveled by each patrol car based on the

chosen strategy schedule to reduce cost of deployment of the strategy (section 8).

In the rest of this paper, we elaborate on each of STOP’s modules and algorithms.

3.1 STOP Module 2: Strategies Derivation

To develop module 2, we proceed in two steps. First, we model a single speed trap with a

game between drivers and law enforcers. We then derive the Nash Equilibrium and draw

conclusions on how to better apply law enforcement. Second, we extend the study and

model multiple speed traps deployment.

3.1.1 Game Model for Speed Trap Allocation

In this section, we focus on a single speed trap scenario. This study will enable us to

understand the behavior of a law enforcer and the driver on a single trap and then draw

conclusions on the more general case of multiple speed traps. As mentioned before, we

model the problem of speed trap deployment as a game with two players: the enforcer and

the driver. The enforcer deploys speed traps in a randomized manner, while driver attempts

to evade being caught while speeding. We define two strategies for the law enforcer:

applying tough law or applying flexible law.

Fig. 1 STOP modules
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• A tough enforcer is strict; he deploys a speed trap and spends the whole time working it

and patrolling.

• A flexible enforcer, due to limitations in the number of personnel to cover speed traps,

will pretend to enforce the law. He will park an uncovered car near the location of a

speed trap. This strategy will deceive the driver who would potentially infer that the

law is being strictly enforced and thus deter him/her from speeding.

In response, the driver may adopt either one of these two strategies: violating or obeying

the law. The game between the law enforcer and the driver takes place as follows:

• The enforcer chooses a law enforcement strategy ti, i [ (1, 2) from the feasible set

T = {t1, t2}, according to the probability distribution p(ti), where t1 represents the

tough-strategy and t2 represents the flexible-strategy. For each i, the following

conditions stands: p tið Þ� 0 and
P

p tið Þ ¼ 1.

• The driver observes ti. Then s/he selects, ak, (k [ (1, 2)) from the feasible action set

A = {a1, a2}, where a1 refers to offending the law while a2 to obeying the law.

• Once the enforcer is aware of the driver strategy, he selects an action bn, n [ (1, 2),

from B = {b1, b2}, where b1 (resp. b2) refers to punishing (resp. not punishing) the

driver.

• The enforcer and driver payoffs are respectively Ue(ti, ak, bn) and Ud(ti, ak, bn). Table 1

summarizes players’ actions notations.

We assume that the enforcer has knowledge of his/her utility function and that of the

driver. On the other hand, the driver knows his/her utility function but has no access to the

enforcer’s utility function. Before detailing the utility functions, we introduce the fol-

lowing parameters:

• g is the net gain of the driver defined as savings in travel time by the driver (potentially

through speeding).

• s is the punitive cost to the driver which is the speeding fine.

• k is the parameter mapping the punishment into the negative utility.

• G is the social welfare.

• r1 is the law credibility in case of covered speed trap.

• r2 is the law credibility in case of uncovered speed trap.

Figure 2 exhibits the extensive form game. In case the enforcer is tough (t1), the driver

chooses between:

• Violating (a1) where s/he will receive a penalty from the law enforcement and

consequently a negative utility Ud(t1, a1, b1) = g – k s B 0. It is worth noting that g -

Table 1 Notation list
Notation Description

a1 The driver chooses violation

a2 The driver obeys the law

t1 The enforcer is tough

t2 The enforcer is flexible

b1 The enforcer is punishing the driver

b2 The enforcer is not punishing the driver
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k s should be negative, otherwise the punishment does not make sense. In such case, the

enforcer will receive a positive utility equal to Ue(t1, a1, b1) = G ? r1.

• Obeying the law (a2) then s/he will receive a utility Ud(t1, a2, b2) = 0, while the

enforcer will receive a positive utility in the form of credibility Ue(t1, a2, b2) = r1.

Alternatively, if the enforcer chooses the flexible strategy (t2), then the driver can decide

between:

• Violating (a1): the driver will not be punished and will receive a utility of

Ud(t2, a1, b2) = g C 0, while the enforcer will receive 0 utility such that

Ue(t2, a1, b2) = 0.

It is to be noted that the proposed framework strives to enhance active road security

with a limited number of resources. In this context, we assume that a flexible enforcer,

contrarily to the tough enforcer, adopts a smooth strategy. More precisely, the flexible

enforcer places an uncovered car to dupe the driver and thus force him to decelerate.

This is achieved while minimizing the cost of speed traps and increasing the law

credibility.

• Obeying the law (a2) the driver will receive zero utility (Ud(t2, a2, b2) = 0), while the

enforcer will receive a positive utility in the form of law enforcement credibility: Ue(t2,

a2, b2) = r2, such that r2\ r1.

At this stage, we proceed with computing the Nash Equilibrium. We denote by p the

probability of the law enforcer choosing t1 and by (1 - p) the probability of the law

enforcer choosing t2. Table 2 shows the payoff matrix.

The Nash Equilibrium is achieved by the following equation:

p g� ksð Þ þ 1 � pð Þg ¼ 0 ð1Þ

Fig. 2 The extensive game form
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We calculate the probability p and (1 - p) so that the driver will be indifferent in terms

of the utility if s/he chooses the actions a1 or a2, regardless of the enforcer’s action. As a

result, we obtain p ¼ g
ks; this value of p governs the enforcer’s mixed strategy (choosing

between t1 or t2). With this mixed strategy, the driver has no incentive to speed, as the

expected utility of violating (a1) or obeying (a2) the law are the same.

In the following sections, we extend this study to a multiple speed trap scenario. We

model the problem with a SSG where the leader is the law enforcer and the follower is the

driver.

3.1.2 Game Model for Speed Trap Allocation

A law enforcement agency has a limited number of available resources. Therefore, to

reduce car accidents and optimally allocate the limited speed traps, we should adopt a

dynamic and randomized strategy accounting for temporal parameters, accidents proba-

bility, traffic congestion percentage and number of resources.

To achieve this randomization, we model the decision of deploying the speed traps as an

SSG, where the leader is the law enforcer and the follower is the driver. The law enforcer

covers a subset of the roads segments using the available (albeit limited) number of speed

traps and the driver chooses the segment where to violate.

The law enforcer employs a mixed strategy to mislead the driver of the exact place of

the speed traps. The possible law enforcer’s actions are the set of possible speed traps

combinations. For example, if we have to set 2 radars on 3 roads segments A, B and C,

therefore we will have C2
3 possible strategies for the ISF which are: covering (A, B),

covering (A, C) or covering (B, C).In this case, the driver will have to choose between

violating segment A, violating segment B or violating segment C.

For the model tractability, we partitioned the highways into road segments. Where

speed traps are separated by an average distance calculated according to several factors that

are out of the scope of our paper.

3.1.3 Compact Representation

The strategy space of the enforcer and driver is a function of the number of road segments.

As such, enumerating all the combinations of strategies presents a scalability challenge to

solve for the optimal strategy. We address this issue by reducing the size of the space of the

possible strategies as follows:

First, we focus on road segments where the traffic speed could reach more than

30 mph ^ 50 km/h, those segments exhibit a higher rate of fatal road accidents [23].

Second, we minimize the space of strategies by developing a distributed algorithm to be

executed by a local law enforcement agent. A typical law enforcement agency partitions its

area of coverage into a set of command centers (each center controlling a region) [24].

Table 2 Enforcer and driver payoff matrix

Enforcer/driver a1 a2

t1 G ? r1; g - ks r1; 0

t2 0; g r2; 0
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Each center runs the STOP platform on its covered region so that STOP manipulates a

subset of the number of roads which reduces the strategies space. Third, STOP does not

consider congested roads which do not represent speeding opportunities for the drivers.

3.2 STOP Module 3: Payoff Calculation

STOP considers two payoff matrices: one for the law enforcer and another for the driver

according to their utility functions. The enforcer’s payoff is determined as follows:

• If the driver violates a covered road, then the enforcer receives G[ 0 where

G corresponds to the social welfare.

• If the driver violates an uncovered road, then the enforcer receives a negative utility

- G*Pa(t), where Pa(t) is the accident probability at the considered road t.

Alternatively, the driver payoff is determined as follows:

• If the enforcer is covering a road segment and the driver violates it, then s/he is

punished by paying the fine. In such case, the driver’s payoff is g - ks B 0, where g is

the driver’s gain (the time saved by the driver), s is the punitive cost (the ticket price

paid) and k is a parameter mapping the punishment into the negative utility.

• If the driver violates an unprotected road segment, then s/he receives a positive utility

g, which is the saved time.

Table 3 contains an example of the payoff matrix with 2 speed traps deployed on 3

roads segments: A, B and C. The enforcer has only three ðC2
3Þ possible strategies: protect

segments A and B, protect segments A and C or protect segments B and C at the same

time. In response, the driver can choose between violating segment A, violating segment B

or violating segment C.

3.3 STOP Module 4: Game Equilibrium Solutions

Given the payoff matrices of the enforcer and driver, we proceed into solving the equi-

librium solutions. In this section, we aim at comparing two solutions NE and SSE. This

will help us to determine the best approach to adopt in STOP.

3.3.1 Nash Equilibrium (NE)

The mixed strategy NE solution is solved by finding the probability distribution over the

strategies of each player. The NE is attained if the strategies are mutually best responses to

each other, so that the players have no reason to deviate from the given strategy profile. In

other words, our objective is to find a probability distribution over the enforcer’s strategies

in a way that the driver is indifferent from choosing any of his/her strategies. At the same

time, we should find the probability distribution over the driver’s strategies in a way that

Table 3 Enforcer and driver
payoff matrix

Enforcer/driver A B C

A, B G; g - ks G; g - ks - G*Pa(C); g

A, C G; g - ks - G*Pa(B); g G; g - ks

B, C - G*Pa(A); g G; g - ks G; g - ks
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the enforcer is indifferent from choosing between his/her strategies. Having n strategies for

the enforcer and m strategies for the driver, we define R as the enforcer payoff matrix and

C the driver payoff matrix, such that:

• Rij is the enforcer’s payoff corresponding to his/her strategy i, i [ {1, 2,…,n} and to the

driver strategy j, j [ {1, 2,…,m}.

• Cij is the driver’s payoff corresponding to his/her strategy j, j [ {1, 2,…,m} and to the

enforcer’s strategy i, i [ {1, 2,…,n}.

The mixed strategy NE solution is solved by finding the probability distribution over the

strategies of each player. Let the vector x =\xi[ be the mixed strategy for the enforcer,

where xi is the probability of the enforcer choosing strategy i, and the vector q =\qj[be

the mixed strategy of the driver, where qj is the probability of the driver choosing strategy

j. We can then obtain NE as follows:

For the enforcer, we solve the following set of equations:

Pn

i¼1

xiCij ¼
Pn

i¼1

xiCi1 8j[ 1

Pn

i¼1

xi ¼ 1

8
>><

>>:
ð2Þ

For the driver, we solve the following equations:

Pm

j¼1

qjRij ¼
Pm

j¼1

qjR1j 8i[ 1

Pm

j¼1

qj ¼ 1

8
>><

>>:
ð3Þ

Equation (2) specifies that to find the probabilities xi, we should ensure that the driver

receives the same utility for any strategy j chosen by the enforcer. Similarly, Eq. (3)

indicates that we should find the probabilities qi in a way that the enforcer receives the

same utility for any strategy i chosen by the driver. Solving both equations allows us to

derive a probability distribution for the driver’s and the enforcer’s strategies leading to the

mixed strategy NE.

3.3.2 Stackelberg Equilibrium

The NE solution guarantees that each player receives the best utility regardless of the other

player’s strategy. The SSE, on the other hand, attempts to search directly for an optimal

enforcer strategy which is more desirable in our context of traffic patrolling and citizens

safety.

To solve for SSE, we define a Mixed Integer Quadratic Program (MIQP) and present a

linearized equivalent Mixed Integer Linear Program (MILP). First, the driver chooses a

strategy that maximizes his/her utility. According to this strategy, we find the enforcer’s

mixed strategy that provides the highest utility.

We denote by:

• X and Q the index sets of enforcer and driver’s pure strategies, respectively.

• x =\xi[ the enforcer’s mixed strategy vector where xi is the probability of employing

strategy i.

Speed Trap Optimal Patrolling: STOP Playing Stackelberg…

123



• q =\qj[ the driver’s pure strategies vector where qj [ {0, 1}, qj is equal to 1 when

the strategy j is employed by the driver.

As specified earlier, the payoff matrices R and C are defined such that Rij represents the

enforcer’s utility and Cij the follower’s utility when the enforcer adopts pure strategy i and

the driver applies pure strategy j.

The enforcer’s MIQP problem is defined in Eq. (4) as:

max
x;q;a

P

i2X

P

j2Q
Rijxiqj

s:t:
P

i2X
xi ¼ 1

P

j2Q
qj ¼ 1

0� a�
P

i2X
Cijxi

� �

� 1 � qj
� �

M

xi 2 0; 1½ �
qj 2 0; 1f g
a 2 R

ð4Þ

Our objective is to obtain the mixed strategy of the enforcers that maximizes its

expected utility over all possible driver strategies, subject to a set of constraints. The first

and fourth constraints define xi as the probability distribution of strategies. The second and

fifth constraints limit the vector q to a pure distribution over the driver’s strategies; qj is

equal to one when the driver chooses the pure strategy j, and the remaining indices are

equal to zero. The third constraint ensures that qj = 1 for strategy j that is optimal for the

driver: the left-side inequality ensures that for all j [ Q, a C
P

i2X Cijxi. This means that

for a given vector x, a is an upper bound for the driver’s utility for any strategy. The right-

side inequality is inactive for every action where qj = 0 since M is a large positive

quantity. For the action that has qj = 1, this inequality states that the adversary’s payoff for

this action must be C a, which combined with the previous inequality shows that this

action must be optimal for the driver.

We linearized the previous MIQP through the change of zij = xiqj. We obtain the

following MILP as stated in Eq. (5):

max
q;z;a

P

i2X

P

j2Q
Rijzij

s:t:
P

i2X

P

j2Q
zij ¼ 1

P

j2Q
zij � 1

q
j�
P

i2X
zij
� 1

P

j2Q
qj ¼ 1

0� a�
P

i2X
Cijð

P

h2Q
zih

 !

Þ� 1 � qj
� �

M

zij 2 0. . .1½ �
qj 2 0; 1f g
a 2 <

ð5Þ
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3.3.3 NE and SSE Comparison

Table 5 presents an example of a comparative study between the NE and the SSE. In this

example, we consider 3 roads: Road1, Road2 and Road3, with 2 available speed traps

(similar to Table 3). We have the following payoff matrices for the driver and the enforcer

(Table 4).

Our proposal focuses on enhancing road safety which is related to maximizing the

enforcer utility. Therefore, we opt for adopting the Stackelberg security game.

In fact, with the Stackelberg game framework, the law enforcer (defender) acts first by

committing to a patrolling strategy, and the driver (attacker) chooses where to attack after

observing the defender’s choice. The typical solution assumes that the defender chooses an

optimal mixed strategy based on the assumption that the attacker will observe this strategy

and choose an optimal response.

More specifically, the SSE searches directly for the driver’s strategy that maximizes the

enforcer’s utility while the Nash equilibrium (NE) gives a probability distribution over

both the enforcer’s and driver’s strategies. With NE, no player can obtain a higher profit by

choosing a different strategy. Consequently, no player (driver or enforcer) wants to change

its strategy.

Since we are mainly concerned with the road active security, maximizing the enforcer

utility is a goal. Table 5 shows that SSE assigns the enforcer a utility(100) that is higher

than that of NE (35.77). Therefore, the Stackleberg security game or the leader–follower

paradigm is best suited to model interactions between the security forces and drivers.

3.4 STOP Module 5: Speed Trap Deployment Schedule

According to the obtained probability distribution over the strategies for each shift, the

enforcer chooses the best strategy to deploy. The choice of strategies for each shift gives a

schedule for the speed traps.

For reader clarity, we detail hereafter the speed trap deployment process on a set of six

roads with 3 available speed traps, and 3 shifts: shift1 (from 8 AM to 1 PM), shift2 (from

2 PM to 7 PM) and shift3 (from 8 PM to 1 AM) on Monday 13/2/2017.

Table 4 Enfocer and driver
payoff matrices

Enforcer’s payoff matrix

Driver violates? Road1 Road2 Road3

Road1–Road2 300 300 - 150

Road1–Road3 300 - 90 300

Road2–Road3 - 120 300 300

Driver’s payoff matrix

Driver violates? Road1 Road2 Road3

Road1–Road2 300 300 - 150

Road1–Road3 300 - 90 300

Road2–Road3 - 120 300 300
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In a first step, STOP platform collects inputs (probability of accidents, traffic density

and number of resources) related to Shift 1. Then, STOP derives strategies and computes

the game solution as described in modules 1, 2, 3 and 4 of Fig. 1.

The probability distribution is exhibited in Fig. 3. One can see that the maximum

probability is associated with the strategy: ‘Road2–Road3–Road4’. Consequently, the

speed traps are deployed in these roads for shift 1. The adopted steps are repeated and

applied for the subsequent shifts.

Table 6 exhibits the speed trap deployment schedule for 3 shifts of Monday and

Tuesday.

3.5 STOP Module 6: Minimal Distance Calculation

To reduce the cost incurred by the law enforcement agency, we design a plan that mini-

mizes the distance travelled by a patrolling car between shifts. When a shift ends, the patrol

cars should travel to another area to cover it. Therefore, to save the time spent during

transportation and reduce pollution, we propose an algorithm that decides on travel plan for

a patrolling car during a work day. Given Sh strategies scheduled for each epoch and d the

roads distance, the algorithm proceeds as follows:

Table 5 NE and SSE comparison

NE SSE

Enforcer’s probability distribution over
the strategies

x1 ¼ x2 ¼ x3 ¼ 1=3 x1 = 0.3333333381900081;
x2 = 0.33333332361998375;
x3 = 0.33333333819000804

Driver’s probability distribution over the
strategies

q1 ¼ 195
587

; q2 ¼ 210
587

;

q3 ¼ 182
587

q2 = 1 and q1 = q3 = 0

Enforcer’s utility in case of choosing
strategy 1 for the enforcer and strategy
2 for the driver

1
3
� 210

587
� 300 ¼ 35:77 0:3333333381900081 � 1 � 300 ¼ 100

Fig. 3 Probability distribution over strategies obtained for shift 1

R. Naja et al.

123



Algorithm 1: Minimal traveled distance                  

1. For each time epoch h, from h=H to h=2
1a.Get the strategy Sh for the time epoch h
1b.Get the strategy Sh-1 for the time epoch h-1
1c.Solve the Linear Program 1

Linear Program 1 

min

s.t.  ∑ ,
ℎ = 1,

∑ ,
ℎ = 1,

,
ℎ  . ℎ ( ), ℎ+1 ( ) + ℎ+1 ( ) , ,

,
ℎ {0,1}, ,

The linear program 1’s objective is to derive a driving plan for each patrol car to cover

all the speed traps and minimize the travel time. Therefore, we oriented our efforts towards

elaborating an optimization model that minimizes the maximum distance travelled by each

patrolling car. Let Sh(k) denote the kth target in the hth shift. For example, shij ¼ 1 indicates

that the car that was used in strategy Sh(i) at road i, will be used in Sh?1(j) to cover road

j. Dh(j) denotes the distance traveled from Sh(j) at shift h to H. The first and second

constraints ensure that one target at h is connected to only one target at h ? 1 and vice

versa. The third constraint computes the total distance traveled by the patrol teams.

4 Simulation and Results

In this section, we provide numerical results and elaborate conclusions on the optimal

driving plan and speed trap deployment utility.

We implemented a simulator to evaluate STOP. It takes as inputs the traffic density per

road, accidents probability, number of resources, and the list of roads.

In order to evaluate STOP, we considered a road segments map presented in Fig. 4. We

assumed traffic densities and probability of accidents delivered by the National Council for

Scientific Research (CNRS) in Lebanon as part of an ongoing national transportation

project.

Table 6 Schedule example
Lists of roads Road1 Road2 Road3 Road4 Road5 Road6

Monday 13/2/2017

Shift1 9 9 9

Shift2 9 9 9

Shift3 9 9 9

Tuesday 14/2/2017

Shift1 9 9 9

Shift2 9 9 9

Shift3 9 9 9
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We simulated the STOP framework over 3 different scenarios. Scenario 1 evaluates the

impact of shifts and resources on enforcer’s utility. Scenario 2 studies the probability

distribution of strategies with different probability of accidents. Scenario 3 tackles the

extreme accidents probability and evaluates the impact of resources on enforcer’s utility.

4.1 Scenario1: Study of Enforcer’s Utility Variation

Scenario 1 aims at evaluating the impact of deploying number of resources during the

different shifts on the enforcer’s utility. Scenario 1 parameters are identified in Table 7.

Table 7 shows the considered roads, along with their traffic density, the probability of

accidents on each road, at each shift and the different number of resources. It is to be noted

that the metrics adopted in STOP platform and exhibited in Tables 7 and 8 are provided by

the Lebanese National Council of Research.

We evaluate the enforcer’s utility for each shift and number of resources as evident in

Fig. 5. First, we observe that the enforcer’s utility has the lowest values in the first shift of

patrolling (from 8 AM to 1 PM); this is due to the high probability of accidents at this

interval of time of the day. In the second and third shift of patrolling the probability of

accidents starts to decrease and therefore the enforcer’s utility is higher than the first shift.

It is also clear that the increase in deployed resources on roadways, correspond to an

increase in the enforcer’s utility.

Road1

Road2

Road3
Road4

Road5 Road6

Fig. 4 Road segments map
example

Table 7 Scenario 1 parameters

List of roads (L) Road1–Road2–Road3–Road4–Road5–Road6

Traffic density 0.30, 0.35, 0.34, 0.30, 0.35, 0.30, 0.30

Probability of accidents Shift1 (from 8 AM to 1 PM): 0.38–0.35–0.34–0.37–0.38–0.38–0.35

Shift2 (from 2 PM to 7 PM): 0.31–0.32–0.31, 0.32–0.29–0.30–0.31

Shift 3 (from 8 PM to 1 AM): 0.11–0.12–0.11–0.12–0.09–0.10–0.11

Number of resources 2–3–4–5–6
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4.2 Scenario 2: Study of Probability Distribution Over Strategies

In the present scenario, we evaluate the probability distribution over the strategies

according to the probabilities of accidents. The goal is to validate the utility of speed traps

deployment on accidental roads. Table 8 exhibits the list of adopted parameters related to

two sets of accidents probability P1 and P2.

Table 8 Scenario 2 parameters

List of roads (L) Road1 Road2 Road3 Road4 Road5 Road6

Number of resources 2

P1 0.75 0.85 0.80 0.40 0.5 0.5

P2 0.75 0.25 0.25 0.40 0.6 0.5

Percentage of congestion (%) 30 30 25 30 70 65
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Fig. 5 Enforcer’s utility during three different epochs of the day
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Fig. 6 The probability
distribution over strategies with
various probability of accidents
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The bar chart of Fig. 6 shows the variation of the strategies’ probability as function of

the variation of the probability of accidents on each road. We should note that we con-

sidered a percentage of congestion threshold equal to 40%, as a result road5 and road6 are

not included in the strategy derivation.

We focus on roads 2 and 3 where we consider high and low values of accident prob-

abilities. In case of a high accident probability on both roads (0.8 and 0.85), we obtained a

strategy probability on road2–road3 equal to 0.5. This result confirms the relevance of

deploying speed traps on accidental roads. However, when the probability of accidents in

road2 and road3 is 0.25, the probability of adopting the strategy road2–road3 is approxi-

mately zero.

The probability distribution over the strategies varies with the probability of the acci-

dents on each road. It worth noting that STOP estimates the mixed strategy to give the

maximum payoff for the enforcer while ensuring an optimal response for the driver.

Therefore, some strategies are not used or have low probabilities even if they appear very

important because of the high probability of accidents on the considered roads.

4.3 Scenario 3: Study of Extreme Conditions of Accident Probabilities

In this scenario, we study two extreme cases of the probability of accidents. For each case,

we calculate the enforcer’s utility according to various number of resources. Table 9 shows

the list of considered parameters.

Scenario 3 results are shown in Figs. 7 and 8. In this scenario, we consider two extreme

cases, with the probability of accidents (P) equal to either 1 or 0. We compare the

enforcer’s utility in each case by varying the number of available resources.

When the probability of accidents is 1, we notice in Fig. 7 that when we use 2 resources

to cover the 6 considered roads, the enforcer receives a negative utility. In this case, the

enforcer is leaving many roads unprotected leaving the drivers to face a high risk of

accidents. As the number of resources increases, the utility of the enforcer increases and

assumes a positive value. The enforcer will be covering more roads which reduces the risk

of drivers having accidents.

In the extreme case of a zero probability of accidents (Fig. 8), the roads are safe and

there is no risk of traffic accidents and fatalities. By adding more resources, we observe in

Fig. 8 that the enforcer’s utility increases. This utility increase is compatible with our

linear program that calculates the enforcer’s utility according to the enforcer’s payoff

matrix and it is clear that the more we add resources the less we get negative utility, since

when the enforcer is covering a certain road, s/he receives a positive utility. Moreover, the

utility increases as the number of resources increases.

Table 9 Scenario 3 parameters

List of roads L Road1–Road2–Road3–Road4–Road5–Road6

Number of resources {2, 3, 4, 5}

Probability of accidents (P) {0, 1}

Traffic density Road1 Road2 Road3 Road4 Road5 Road6

0.3 0.3 0.25 0.3 0.3 0.35
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5 Conclusion

Traffic patrolling is a challenge faced by any law enforcement agency. To avoid drivers

predicting traffic patrolling schedules, randomizing these schedules is a must. Moreover,

any traffic patrolling schedule should consider a set of parameters including: date and time,

probability of accidents on roads, percentage of congestion, and number of available

resources.

In this paper, we present STOP, a framework that assists a law enforcement agency in

optimally deploying speed traps. We model the interaction between drivers and enforcers

using an SSG to find the optimal randomized strategy that ensures the coverage for the

maximum number of roads.

We solved the SSG using two approaches: the SSE and NE, and showed that the SSE is

more compatible in our context.

We evaluated STOP in three different scenarios. We found that the enforcer’s utility

increases when the accident probability is reduced and the probability of using a strategy is

related to the probability of accidents on the considered roads (the strategies probability is

higher on accidental roads).

We plan to follow up on this work by further exploring the notion of flexible law

enforcement (Sect. 4.1), especially when the accident probability on certain roads is very

low. This could help ensure the law credibility and reduce law enforcement costs.

This work was funded with support from the Lebanese University and the AUF ‘‘Projet

de cooperation scientifique inter-universitaire’’ (PCSI) project.
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